Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Nov;106(3):1057–1063. doi: 10.1104/pp.106.3.1057

Organization of Photosystem I Polypeptides (A Structural Interaction between the PsaD and PsaL Subunits).

Q Xu 1, T S Armbrust 1, J A Guikema 1, P R Chitnis 1
PMCID: PMC159631  PMID: 12232386

Abstract

The wild-type, PsaD-less, and PsaL-less strains of the cyanobacterium Synechocystis sp. PCC 6803 were used to study subunit interactions in photosystem I (PSI). When the membranes of a PsaD-less strain were solubilized with Triton X-100 and PSI was purified using ion-exchange chromatography and sucrose-gradient ultracentrifugation, the PsaL subunit was substantially removed from the core of PSI, whereas other subunits, such as PsaE and PsaF, were quantitatively retained during purification. When the wild-type PSI was exposed to increasing concentrations of NaI, the PsaE, PsaD, and PsaC subunits were gradually removed, whereas PsaF, PsaL, PsaK, and PsaJ resisted removal by up to 3 M NaI. The absence of PsaL enhanced the accessibility of PsaD to removal by NaI. Treatment of the wild-type PSI complexes with glutaraldehyde at 4[deg] C resulted in a 29-kD cross-linked product between PsaD and PsaL. The formation of such cross-linked species was independent of PSI concentrations, suggesting an intracomplex cross-linking between PsaD and PsaL. Taken together, these results demonstrate a structural interaction between PsaD and PsaL that plays a role in their association with the PSI core.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chitnis P. R., Nelson N. Assembly of Two Subunits of the Cyanobacterial Photosystem I on the n-Side of Thylakoid Membranes. Plant Physiol. 1992 May;99(1):239–246. doi: 10.1104/pp.99.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chitnis P. R., Purvis D., Nelson N. Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1991 Oct 25;266(30):20146–20151. [PubMed] [Google Scholar]
  3. Chitnis P. R., Reilly P. A., Nelson N. Insertional inactivation of the gene encoding subunit II of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1989 Nov 5;264(31):18381–18385. [PubMed] [Google Scholar]
  4. Chitnis V. P., Chitnis P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 1993 Dec 27;336(2):330–334. doi: 10.1016/0014-5793(93)80831-e. [DOI] [PubMed] [Google Scholar]
  5. Chitnis V. P., Xu Q., Yu L., Golbeck J. H., Nakamoto H., Xie D. L., Chitnis P. R. Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1993 Jun 5;268(16):11678–11684. [PubMed] [Google Scholar]
  6. Cohen Y., Chitnis V. P., Nechushtai R., Chitnis P. R. Stable assembly of PsaE into cyanobacterial photosynthetic membranes is dependent on the presence of other accessory subunits of photosystem I. Plant Mol Biol. 1993 Nov;23(4):895–900. doi: 10.1007/BF00021544. [DOI] [PubMed] [Google Scholar]
  7. Golbeck J. H. Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1642–1646. doi: 10.1073/pnas.90.5.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry R. L., Takemoto L. J., Murphy J., Gallegos G. L., Guikema J. A. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1. Plant Physiol Biochem. 1992;30(3):357–364. [PubMed] [Google Scholar]
  9. Kiehm D. J., Ji T. H. Photochemical cross-linking of cell membranes. A test for natural and random collisional cross-links by millisecond cross-linking. J Biol Chem. 1977 Dec 10;252(23):8524–8531. [PubMed] [Google Scholar]
  10. Kjaerulff S., Andersen B., Nielsen V. S., Møller B. L., Okkels J. S. The PSI-K subunit of photosystem I from barley (Hordeum vulgare L.). Evidence for a gene duplication of an ancestral PSI-G/K gene. J Biol Chem. 1993 Sep 5;268(25):18912–18916. [PubMed] [Google Scholar]
  11. Lelong C., Sétif P., Lagoutte B., Bottin H. Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem. 1994 Apr 1;269(13):10034–10039. [PubMed] [Google Scholar]
  12. Li N., Warren P. V., Golbeck J. H., Frank G., Zuber H., Bryant D. A. Polypeptide composition of the Photosystem I complex and the Photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta. 1991 Aug 23;1059(2):215–225. doi: 10.1016/s0005-2728(05)80206-3. [DOI] [PubMed] [Google Scholar]
  13. Mühlenhoff U., Haehnel W., Witt H., Herrmann R. G. Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene. 1993 May 15;127(1):71–78. doi: 10.1016/0378-1119(93)90618-d. [DOI] [PubMed] [Google Scholar]
  14. Reilly P., Hulmes J. D., Pan Y. C., Nelson N. Molecular cloning and sequencing of the psaD gene encoding subunit II of photosystem I from the cyanobacterium, Synechocystis sp. PCC 6803. J Biol Chem. 1988 Nov 25;263(33):17658–17662. [PubMed] [Google Scholar]
  15. Sonoike K., Hatanaka H., Katoh S. Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta. 1993 Feb 8;1141(1):52–57. doi: 10.1016/0005-2728(93)90188-l. [DOI] [PubMed] [Google Scholar]
  16. Weber N., Strotmann H. On the function of subunit PsaE in chloroplast Photosystem I. Biochim Biophys Acta. 1993 Jul 5;1143(2):204–210. doi: 10.1016/0005-2728(93)90144-5. [DOI] [PubMed] [Google Scholar]
  17. Wynn R. M., Malkin R. Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry. 1988 Aug 9;27(16):5863–5869. doi: 10.1021/bi00416a007. [DOI] [PubMed] [Google Scholar]
  18. Wynn R. M., Omaha J., Malkin R. Structural and functional properties of the cyanobacterial photosystem I complex. Biochemistry. 1989 Jun 27;28(13):5554–5560. doi: 10.1021/bi00439a032. [DOI] [PubMed] [Google Scholar]
  19. Xu Q., Yu L., Chitnis V. P., Chitnis P. R. Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem. 1994 Feb 4;269(5):3205–3211. [PubMed] [Google Scholar]
  20. Yu L., Zhao J., Muhlenhoff U., Bryant D. A., Golbeck J. H. PsaE Is Required for in Vivo Cyclic Electron Flow around Photosystem I in the Cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol. 1993 Sep;103(1):171–180. doi: 10.1104/pp.103.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zanetti G., Merati G. Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem. 1987 Nov 16;169(1):143–146. doi: 10.1111/j.1432-1033.1987.tb13591.x. [DOI] [PubMed] [Google Scholar]
  22. Zilber A. L., Malkin R. Organization and topology of photosystem I subunits. Plant Physiol. 1992 Jul;99(3):901–911. doi: 10.1104/pp.99.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES