Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Nov;106(3):1115–1122. doi: 10.1104/pp.106.3.1115

Purification, Characterization, and Submitochondrial Localization of the 32-Kilodalton NADH Dehydrogenase from Maize.

A F Knudten 1, J J Thelen 1, M H Luethy 1, T E Elthon 1
PMCID: PMC159638  PMID: 12232393

Abstract

Plant mitochondria have the unique ability to directly oxidize exogenous NAD(P)H. We recently separated two NAD(P)H dehydrogenase activities from maize (Zea mays L.) mitochondria using anion-exchange (Mono Q) chromatography. The first peak of activity oxidized only NADH, whereas the second oxidized both NADH and NADPH. In this paper we describe the purification of the first peak of activity to a 32-kD protein. Polyclonal antibodies to the 32-kD protein were used to show that it was present in mitochondria from several plant species. Two-dimensional gel analysis of the 32-kD NADH dehydrogenase indicated that it consisted of two major and one minor isoelectric forms. Immunoblot analysis of submitochondrial fractions indicated that the 32-kD protein was enriched in the soluble protein fraction after mitochondrial disruption and fractionation; however, some association with the membrane fraction was observed. The membrane-impermeable protein cross-linking agent 3,3[prime] -dithiobis-(sulfosuccinimidylpropionate) was used to further investigate the submitochondrial location of the 32-kD NADH dehydrogenase. The 32-kD protein was localized to the outer surface of the inner mitochondrial membrane or to the intermembrane space. The pH optimum for the enzyme was 7.0. The activity was found to be severely inhibited by p-chloromercuribenzoic acid, mersalyl, and dicumarol, and stimulated somewhat by flavin mononucleotide.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chauveau M., Lance C. Purification and Partial Characterization of Two Soluble NAD(P)H Dehydrogenases from Arum maculatum Mitochondria. Plant Physiol. 1991 Mar;95(3):934–942. doi: 10.1104/pp.95.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cook N. D., Cammack R. Purification and characterization of the rotenone-insensitive NADH dehydrogenase of mitochondria from Arum maculatum. Eur J Biochem. 1984 Jun 15;141(3):573–577. doi: 10.1111/j.1432-1033.1984.tb08231.x. [DOI] [PubMed] [Google Scholar]
  3. Cottingham I. R., Cleeter M. W., Ragan C. I., Moore A. L. Immunological analysis of plant mitochondrial NADH dehydrogenases. Biochem J. 1986 May 15;236(1):201–207. doi: 10.1042/bj2360201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cottingham I. R., Moore A. L. Analysis of NADH dehydrogenases from plant [mung bean (Phaseolus aureus)] mitochondrial membranes on non-denaturing polyacrylamide gels and purification of complex I by band excision. Biochem J. 1988 Aug 15;254(1):303–305. doi: 10.1042/bj2540303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cottingham I. R., Moore A. L. Partial purification and properties of the external NADH dehydrogenase from cuckoo-pint (Arum maculatum) mitochondria. Biochem J. 1984 Nov 15;224(1):171–179. doi: 10.1042/bj2240171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
  7. Elthon T. E., McIntosh L. Characterization and Solubilization of the Alternative Oxidase of Sauromatum guttatum Mitochondria. Plant Physiol. 1986 Sep;82(1):1–6. doi: 10.1104/pp.82.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elthon T. E., McIntosh L. Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8399–8403. doi: 10.1073/pnas.84.23.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feeney R., Clarke A. R., Holbrook J. J. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Biochem Biophys Res Commun. 1990 Jan 30;166(2):667–672. doi: 10.1016/0006-291x(90)90861-g. [DOI] [PubMed] [Google Scholar]
  11. Fredlund K. M., Rasmusson A. G., Møller I. M. Oxidation of External NAD(P)H by Purified Mitochondria from Fresh and Aged Red Beetroots (Beta vulgaris L.). Plant Physiol. 1991 Sep;97(1):99–103. doi: 10.1104/pp.97.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haeffner-Gormley L., Chen Z., Zalkin H., Colman R. F. Importance of lysine-286 at the NADP site of glutamate dehydrogenase from Salmonella typhimurium. Biochemistry. 1992 Sep 1;31(34):7807–7814. doi: 10.1021/bi00149a010. [DOI] [PubMed] [Google Scholar]
  13. Hayes M. K., Luethy M. H., Elthon T. E. Mitochondrial malate dehydrogenase from corn : purification of multiple forms. Plant Physiol. 1991 Dec;97(4):1381–1387. doi: 10.1104/pp.97.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klein R. R., Burke J. J. Separation Procedure and Partial Characterization of Two NAD(P)H Dehydrogenases from Cauliflower Mitochondria. Plant Physiol. 1984 Oct;76(2):436–441. doi: 10.1104/pp.76.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243–248. doi: 10.1016/0003-2697(86)90432-x. [DOI] [PubMed] [Google Scholar]
  16. Luethy M. H., Hayes M. K., Elthon T. E. Partial Purification and Characterization of Three NAD(P)H Dehydrogenases from Beta vulgaris Mitochondria. Plant Physiol. 1991 Dec;97(4):1317–1322. doi: 10.1104/pp.97.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luethy M. H., Horak A., Elthon T. E. Monoclonal Antibodies to the [alpha]- and [beta]-Subunits of the Plant Mitochondrial F1-ATPase. Plant Physiol. 1993 Mar;101(3):931–937. doi: 10.1104/pp.101.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mannella C. A., Bonner W. D., Jr Biochemical characteristics of the outer membranes of plant mitochondria. Biochim Biophys Acta. 1975 Dec 1;413(2):213–225. doi: 10.1016/0005-2736(75)90105-4. [DOI] [PubMed] [Google Scholar]
  19. Matsushita K., Ohnishi T., Kaback H. R. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry. 1987 Dec 1;26(24):7732–7737. doi: 10.1021/bi00398a029. [DOI] [PubMed] [Google Scholar]
  20. Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
  21. Ravanel P., Tissut M., Douce R. Platanetin: A Potent Natural Uncoupler and Inhibitor of the Exogenous NADH Dehydrogenase in Intact Plant Mitochondria. Plant Physiol. 1986 Feb;80(2):500–504. doi: 10.1104/pp.80.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rhoads D. M., McIntosh L. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2122–2126. doi: 10.1073/pnas.88.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES