Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1269–1277. doi: 10.1104/pp.106.4.1269

Acquired Resistance in Barley (The Resistance Mechanism Induced by 2,6-Dichloroisonicotinic Acid Is a Phenocopy of a Genetically Based Mechanism Governing Race-Specific Powdery Mildew Resistance).

K H Kogel 1, U Beckhove 1, J Dreschers 1, S Munch 1, Y Romme 1
PMCID: PMC159664  PMID: 12232407

Abstract

Treatment of susceptible barley (Hordeum vulgare) seedlings with 2,6-dichloroisonicotinic acid (DCINA) induces disease resistance against the powdery mildew fungus (Erysiphe graminis f. sp. hordei). A cytological analysis of the interaction reveals the hypersensitive cell collapse in attacked, short epidermal cells, along with the accumulation of fluorescent material in papillae, that appear at the time of fungal arrest. The cell-type-specific hypersensitive reaction occurs prior to formation of haustoria, reminiscent of the mechanism identified in genetically resistant barley plants containing the functionally active Mlg gene (R. Gorg, K. Hollricher, P. Schulze-Lefert [1993] Plant J 3: 857-866). This observation indicates that the mechanism of DCINA-induced resistance is a phenocopy of the mechanism governed by the Mlg locus. The onset of acquired resistance correlates with high-level transcript accumulation of barley defense-related genes encoding pathogenesis-related protein-1, peroxidase, and chitinase but not [beta]-1,3-glucanase. Subcellular localization of peroxidase activity shows an increase in enzyme activity in the epidermal cell layer and in the intercellular fluids of barley leaves. Four out of more than 10 identified extracellular isozymes are induced by DCINA. The epidermal cell layer contains a major constitutively formed isozyme, together with two isozymes specifically induced by DCINA. The data support the hypothesis that host cell death and high-level accumulation of defense-related gene transcripts are not only commonly controlled in certain types of race-specific resistance (A. Freialdenhoven, B. Scherag, K. Hollricher, D.B. Collinge, H. Thordal-Christensen, P. Schulze-Lefert [1994] Plant Cell 6: 983-994) but also in acquired resistance, which confers protection to a broad spectrum of different pathogens.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott K. H., Love J. G. METASTASIZING INTRACRANIAL TUMORS. Ann Surg. 1943 Sep;118(3):343–352. doi: 10.1097/00000658-194309000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andresen I., Becker W., Schlüter K., Burges J., Parthier B., Apel K. The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol. 1992 May;19(2):193–204. doi: 10.1007/BF00027341. [DOI] [PubMed] [Google Scholar]
  3. Bohlmann H., Clausen S., Behnke S., Giese H., Hiller C., Reimann-Philipp U., Schrader G., Barkholt V., Apel K. Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J. 1988 Jun;7(6):1559–1565. doi: 10.1002/j.1460-2075.1988.tb02980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  6. Bryngelsson T., Sommer-Knudsen J., Gregersen P. L., Collinge D. B., Ek B., Thordal-Christensen H. Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol Plant Microbe Interact. 1994 Mar-Apr;7(2):267–275. doi: 10.1094/mpmi-7-0267. [DOI] [PubMed] [Google Scholar]
  7. Fernandez de Caleya R., Gonzalez-Pascual B., García-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972 May;23(5):998–1000. doi: 10.1128/am.23.5.998-1000.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forde B. G., Kreis M., Bahramian M. B., Matthews J. A., Miflin B. J., Thompson R. D., Bartels D., Flavell R. B. Molecular cloning and analysis of cDNA sequences derived from poly A+ RNA from barley endosperm: identification of B hordein related clones. Nucleic Acids Res. 1981 Dec 21;9(24):6689–6707. doi: 10.1093/nar/9.24.6689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freialdenhoven A., Scherag B., Hollricher K., Collinge D. B., Thordal-Christensen H., Schulze-Lefert P. Nar-1 and Nar-2, Two Loci Required for Mla12-Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell. 1994 Jul;6(7):983–994. doi: 10.1105/tpc.6.7.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kerby K., Somerville S. C. Purification of an infection-related, extracellular peroxidase from barley. Plant Physiol. 1992 Sep;100(1):397–402. doi: 10.1104/pp.100.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kogel K. H., Ehrlich-Rogozinski S., Reisener H. J., Sharon N. Surface galactolipids of wheat protoplasts as receptors for soybean agglutinin and their possible relevance to host-parasite interaction. Plant Physiol. 1984 Dec;76(4):924–928. doi: 10.1104/pp.76.4.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Masri S. S., Ellingboe A. H. Primary infection of wheat and barley by Erysiphe graminis. Phytopathology. 1966 Apr;56(4):389–395. [PubMed] [Google Scholar]
  13. Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muradov A., Petrasovits L., Davidson A., Scott K. J. A cDNA clone for a pathogenesis-related protein 1 from barley. Plant Mol Biol. 1993 Oct;23(2):439–442. doi: 10.1007/BF00029021. [DOI] [PubMed] [Google Scholar]
  15. Uknes S., Mauch-Mani B., Moyer M., Potter S., Williams S., Dincher S., Chandler D., Slusarenko A., Ward E., Ryals J. Acquired resistance in Arabidopsis. Plant Cell. 1992 Jun;4(6):645–656. doi: 10.1105/tpc.4.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wiberg A. Genetical studies of spontaneous sources of resistance to powdery mildew in barley. Hereditas. 1974;77(1):89–148. doi: 10.1111/j.1601-5223.1974.tb01357.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES