Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1285–1291. doi: 10.1104/pp.106.4.1285

Immunocytochemical Localization of Prunasin Hydrolase and Mandelonitrile Lyase in Stems and Leaves of Prunus serotina.

E Swain 1, J E Poulton 1
PMCID: PMC159666  PMID: 12232409

Abstract

In macerates of black cherry (Prunus serotina Ehrh.) leaves and stems, (R)-prunasin is catabolized to HCN, benzaldehyde, and D-glucose by the sequential action of prunasin hydrolase (EC 3.2.1.21) and (R)-(+)-mandelonitrile lyase (EC 4.1.2.10). Immuno-cytochemical techniques have shown that within these organs prunasin hydrolase occurs within the vacuoles of phloem parenchyma cells. In arborescent leaves, mandelonitrile lyase was also located in phloem parenchyma vacuoles, but comparison of serial sections revealed that these two degradative enzymes are usually localized within different cells.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kojima M., Poulton J. E., Thayer S. S., Conn E. E. Tissue Distributions of Dhurrin and of Enzymes Involved in Its Metabolism in Leaves of Sorghum bicolor. Plant Physiol. 1979 Jun;63(6):1022–1028. doi: 10.1104/pp.63.6.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Li C. P., Swain E., Poulton J. E. Prunus serotina Amygdalin Hydrolase and Prunasin Hydrolase : Purification, N-Terminal Sequencing, and Antibody Production. Plant Physiol. 1992 Sep;100(1):282–290. doi: 10.1104/pp.100.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Poulton J. E., Li C. P. Tissue Level Compartmentation of (R)-Amygdalin and Amygdalin Hydrolase Prevents Large-Scale Cyanogenesis in Undamaged Prunus Seeds. Plant Physiol. 1994 Jan;104(1):29–35. doi: 10.1104/pp.104.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Poulton J. E. Localization and catabolism of cyanogenic glycosides. Ciba Found Symp. 1988;140:67–91. doi: 10.1002/9780470513712.ch6. [DOI] [PubMed] [Google Scholar]
  5. Selmar D., Lieberei R., Biehl B. Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 1988 Mar;86(3):711–716. doi: 10.1104/pp.86.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Swain E., Li C. P., Poulton J. E. Development of the Potential for Cyanogenesis in Maturing Black Cherry (Prunus serotina Ehrh.) Fruits. Plant Physiol. 1992 Apr;98(4):1423–1428. doi: 10.1104/pp.98.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Swain E., Li C. P., Poulton J. E. Tissue and Subcellular Localization of Enzymes Catabolizing (R)-Amygdalin in Mature Prunus serotina Seeds. Plant Physiol. 1992 Sep;100(1):291–300. doi: 10.1104/pp.100.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Swain E., Poulton J. E. Utilization of Amygdalin during Seedling Development of Prunus serotina. Plant Physiol. 1994 Oct;106(2):437–445. doi: 10.1104/pp.106.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wu H. C., Poulton J. E. Immunocytochemical Localization of Mandelonitrile Lyase in Mature Black Cherry (Prunus serotina Ehrh.) Seeds. Plant Physiol. 1991 Aug;96(4):1329–1337. doi: 10.1104/pp.96.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES