Abstract
Aspartate kinase (AK) and homoserine dehydrogenase (HSDH) are enzymes in the aspartate-derived amino acid biosynthetic pathway. Recent biochemical evidence indicates that an AK-HSDH bifunctional enzyme exists in maize (Zea mays L.). In this report, we characterize three genes that encode subunits of AK-HSDH. Two cDNAs, pAKHSDH1 and pAKHSDH2, containing the full-coding sequence, and one partial cDNA, pAKHSDH3, encode amino acid sequences similar to the reported monofunctional AK and HSDH enzymes from prokaryotes and yeast (Saccharomyces cerevisiae) and to AK-HSDH bifunctional enzymes of prokaryotes, yeast, carrot (Daucus carota), and Arabidopsis thaliana. Immunological and biochemical analyses verify that the cDNAs encode AK-HSDH and indicate that both the AK and HSDH activities are feedback inhibited by threonine. RNA blots identify a 3.2-kb transcript in all maize tissues examined. pAKHSDH1 and pAKHSDH2 map to chromosomes 4L and 2S, respectively. This study shows that maize contains AK-HSDH bifunctional enzyme(s) encoded by a small gene family of at least three genes. Maize AK-HSDH has conserved sequences found in communication modules of prokaryotic two-component regulatory systems, which has led us to propose that maize AK-HSDH may be involved in a similar regulatory mechanism.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belfaiza J., Fazel A., Müller K., Cohen G. N. E. coli aspartokinase II-homoserine dehydrogenase II polypeptide chain has a triglobular structure. Biochem Biophys Res Commun. 1984 Aug 30;123(1):16–20. doi: 10.1016/0006-291x(84)90373-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bright S. W., Miflin B. J., Rognes S. E. Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase. Biochem Genet. 1982 Apr;20(3-4):229–243. doi: 10.1007/BF00484421. [DOI] [PubMed] [Google Scholar]
- Cassan M., Parsot C., Cohen G. N., Patte J. C. Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem. 1986 Jan 25;261(3):1052–1057. [PubMed] [Google Scholar]
- Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
- Chen N. Y., Hu F. M., Paulus H. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. J Biol Chem. 1987 Jun 25;262(18):8787–8798. [PubMed] [Google Scholar]
- Dotson S. B., Somers D. A., Gengenbach B. G. Purification and characterization of lysine-sensitive aspartate kinase from maize cell cultures. Plant Physiol. 1989 Dec;91(4):1602–1608. doi: 10.1104/pp.91.4.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner J. M., Coe E. H., Melia-Hancock S., Hoisington D. A., Chao S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics. 1993 Jul;134(3):917–930. doi: 10.1093/genetics/134.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanelli J., Mudd S. H., Datko A. H. Aspartokinase of Lemna paucicostata Hegelm. 6746. Plant Physiol. 1989 Aug;90(4):1577–1583. doi: 10.1104/pp.90.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Parsot C., Cohen G. N. Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. J Biol Chem. 1988 Oct 15;263(29):14654–14660. [PubMed] [Google Scholar]
- Rafalski J. A., Falco S. C. Structure of the yeast HOM3 gene which encodes aspartokinase. J Biol Chem. 1988 Feb 15;263(5):2146–2151. [PubMed] [Google Scholar]
- Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaul O., Galili G. Threonine Overproduction in Transgenic Tobacco Plants Expressing a Mutant Desensitized Aspartate Kinase of Escherichia coli. Plant Physiol. 1992 Nov;100(3):1157–1163. doi: 10.1104/pp.100.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Barbey R., Surdin-Kerjan Y. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett. 1993 Jun 1;323(3):289–293. doi: 10.1016/0014-5793(93)81359-8. [DOI] [PubMed] [Google Scholar]
- Truffa-Bachi P., Veron M., Cohen G. N. Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I. CRC Crit Rev Biochem. 1974;2(3):379–415. doi: 10.3109/10409237409105452. [DOI] [PubMed] [Google Scholar]
- Turano F. J., Jordan R. L., Matthews B. F. Immunological characterization of in vitro forms of homoserine dehydrogenase from carrot suspension cultures. Plant Physiol. 1990 Feb;92(2):395–400. doi: 10.1104/pp.92.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter T. J., Connelly J. A., Gengenbach B. G., Wold F. Isolation and characterization of two homoserine dehydrogenases from maize suspension cultures. J Biol Chem. 1979 Feb 25;254(4):1349–1355. [PubMed] [Google Scholar]
- Weisemann J. M., Matthews B. F. Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Plant Mol Biol. 1993 May;22(2):301–312. doi: 10.1007/BF00014937. [DOI] [PubMed] [Google Scholar]
- Wilson B. J., Gray A. C., Matthews B. F. Bifunctional protein in carrot contains both aspartokinase and homoserine dehydrogenase activities. Plant Physiol. 1991 Dec;97(4):1323–1328. doi: 10.1104/pp.97.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
