Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1303–1312. doi: 10.1104/pp.106.4.1303

Molecular genetics of the maize (Zea mays L.) aspartate kinase-homoserine dehydrogenase gene family.

G J Muehlbauer 1, D A Somers 1, B F Matthews 1, B G Gengenbach 1
PMCID: PMC159668  PMID: 7846152

Abstract

Aspartate kinase (AK) and homoserine dehydrogenase (HSDH) are enzymes in the aspartate-derived amino acid biosynthetic pathway. Recent biochemical evidence indicates that an AK-HSDH bifunctional enzyme exists in maize (Zea mays L.). In this report, we characterize three genes that encode subunits of AK-HSDH. Two cDNAs, pAKHSDH1 and pAKHSDH2, containing the full-coding sequence, and one partial cDNA, pAKHSDH3, encode amino acid sequences similar to the reported monofunctional AK and HSDH enzymes from prokaryotes and yeast (Saccharomyces cerevisiae) and to AK-HSDH bifunctional enzymes of prokaryotes, yeast, carrot (Daucus carota), and Arabidopsis thaliana. Immunological and biochemical analyses verify that the cDNAs encode AK-HSDH and indicate that both the AK and HSDH activities are feedback inhibited by threonine. RNA blots identify a 3.2-kb transcript in all maize tissues examined. pAKHSDH1 and pAKHSDH2 map to chromosomes 4L and 2S, respectively. This study shows that maize contains AK-HSDH bifunctional enzyme(s) encoded by a small gene family of at least three genes. Maize AK-HSDH has conserved sequences found in communication modules of prokaryotic two-component regulatory systems, which has led us to propose that maize AK-HSDH may be involved in a similar regulatory mechanism.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belfaiza J., Fazel A., Müller K., Cohen G. N. E. coli aspartokinase II-homoserine dehydrogenase II polypeptide chain has a triglobular structure. Biochem Biophys Res Commun. 1984 Aug 30;123(1):16–20. doi: 10.1016/0006-291x(84)90373-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bright S. W., Miflin B. J., Rognes S. E. Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase. Biochem Genet. 1982 Apr;20(3-4):229–243. doi: 10.1007/BF00484421. [DOI] [PubMed] [Google Scholar]
  4. Cassan M., Parsot C., Cohen G. N., Patte J. C. Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem. 1986 Jan 25;261(3):1052–1057. [PubMed] [Google Scholar]
  5. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  6. Chen N. Y., Hu F. M., Paulus H. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. J Biol Chem. 1987 Jun 25;262(18):8787–8798. [PubMed] [Google Scholar]
  7. Dotson S. B., Somers D. A., Gengenbach B. G. Purification and characterization of lysine-sensitive aspartate kinase from maize cell cultures. Plant Physiol. 1989 Dec;91(4):1602–1608. doi: 10.1104/pp.91.4.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gardiner J. M., Coe E. H., Melia-Hancock S., Hoisington D. A., Chao S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics. 1993 Jul;134(3):917–930. doi: 10.1093/genetics/134.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giovanelli J., Mudd S. H., Datko A. H. Aspartokinase of Lemna paucicostata Hegelm. 6746. Plant Physiol. 1989 Aug;90(4):1577–1583. doi: 10.1104/pp.90.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  11. Parsot C., Cohen G. N. Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. J Biol Chem. 1988 Oct 15;263(29):14654–14660. [PubMed] [Google Scholar]
  12. Rafalski J. A., Falco S. C. Structure of the yeast HOM3 gene which encodes aspartokinase. J Biol Chem. 1988 Feb 15;263(5):2146–2151. [PubMed] [Google Scholar]
  13. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shaul O., Galili G. Threonine Overproduction in Transgenic Tobacco Plants Expressing a Mutant Desensitized Aspartate Kinase of Escherichia coli. Plant Physiol. 1992 Nov;100(3):1157–1163. doi: 10.1104/pp.100.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thomas D., Barbey R., Surdin-Kerjan Y. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett. 1993 Jun 1;323(3):289–293. doi: 10.1016/0014-5793(93)81359-8. [DOI] [PubMed] [Google Scholar]
  16. Truffa-Bachi P., Veron M., Cohen G. N. Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I. CRC Crit Rev Biochem. 1974;2(3):379–415. doi: 10.3109/10409237409105452. [DOI] [PubMed] [Google Scholar]
  17. Turano F. J., Jordan R. L., Matthews B. F. Immunological characterization of in vitro forms of homoserine dehydrogenase from carrot suspension cultures. Plant Physiol. 1990 Feb;92(2):395–400. doi: 10.1104/pp.92.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walter T. J., Connelly J. A., Gengenbach B. G., Wold F. Isolation and characterization of two homoserine dehydrogenases from maize suspension cultures. J Biol Chem. 1979 Feb 25;254(4):1349–1355. [PubMed] [Google Scholar]
  19. Weisemann J. M., Matthews B. F. Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Plant Mol Biol. 1993 May;22(2):301–312. doi: 10.1007/BF00014937. [DOI] [PubMed] [Google Scholar]
  20. Wilson B. J., Gray A. C., Matthews B. F. Bifunctional protein in carrot contains both aspartokinase and homoserine dehydrogenase activities. Plant Physiol. 1991 Dec;97(4):1323–1328. doi: 10.1104/pp.97.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES