Abstract
To understand the origin of vacuolar H+ -ATPases (V-ATPases) and their cellular functions, the subcellular location of V-H+ -ATPases was examined immunologically in root cells of oat seedlings. A V-ATPase complex from oat roots consists of a large peripheral sector (V1) that includes the 70-kD (A) catalytic and the 60-kD (B) regulatory subunits. The soluble V1 complex, thought to be synthesized in the cytoplasm, is assembled with the membrane integral sector (V0) at a yet undefined location. In mature cells, V-ATPase subunits A and B, detected in immunoblots with monoclonal antibodies (Mab) (7A5 and 2E7), were associated mainly with vacuolar membranes (20-22% sucrose) fractionated with an isopycnic sucrose gradient. However, in immature root tip cells, which lack large vacuoles, most of the V-ATPase was localized with the endoplasmic reticulum (ER) at 28 to 31% sucrose where a major ER-resident binding protein equilibrated. The peripheral subunits were also associated with membranes at 22% sucrose, at 31 to 34% sucrose (Golgi), and in plasma membranes at 38% sucrose. Immunogold labeling of root tip cells with Mab 2E7 against subunit B showed gold particles decorating the ER as well as numerous small vesicles (0.1-0.3 [mu]m diameter), presumably pro-vacuoles. The immunological detection of the peripheral subunit B on the ER supports a model in which the V1 sector is assembled with the V0 on the ER. These results support the model in which the central vacuolar membrane originates ultimately from the ER. The presence of V-ATPases on several endomembranes indicates that this pump could participate in diverse functional roles.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali M. S., Akazawa T. Association of H-Translocating ATPase in the Golgi Membrane System from Suspension-Cultured Cells of Sycamore (Acer pseudoplatanus L.). Plant Physiol. 1986 May;81(1):222–227. doi: 10.1104/pp.81.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anraku Y., Umemoto N., Hirata R., Ohya Y. Genetic and cell biological aspects of the yeast vacuolar H(+)-ATPase. J Bioenerg Biomembr. 1992 Aug;24(4):395–405. doi: 10.1007/BF00762532. [DOI] [PubMed] [Google Scholar]
- Bennett A. B., O'neill S. D., Spanswick R. M. H-ATPase Activity from Storage Tissue of Beta vulgaris: I. Identification and Characterization of an Anion-Sensitive H-ATPase. Plant Physiol. 1984 Mar;74(3):538–544. doi: 10.1104/pp.74.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berkelman T., Houtchens K. A., DuPont F. M. Two cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots. Plant Physiol. 1994 Jan;104(1):287–288. doi: 10.1104/pp.104.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman B. J., Vázquez-Laslop N., Bowman E. J. The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr. 1992 Aug;24(4):361–370. doi: 10.1007/BF00762529. [DOI] [PubMed] [Google Scholar]
- Chanson A., Taiz L. Evidence for an ATP-Dependent Proton Pump on the Golgi of Corn Coleoptiles. Plant Physiol. 1985 Jun;78(2):232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Churchill K. A., Holaway B., Sze H. Separation of two types of electrogenic h-pumping ATPases from oat roots. Plant Physiol. 1983 Dec;73(4):921–928. doi: 10.1104/pp.73.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DuPont F. M., Morrissey P. J. Subunit composition and Ca(2+)-ATPase activity of the vacuolar ATPase from barley roots. Arch Biochem Biophys. 1992 May 1;294(2):341–346. doi: 10.1016/0003-9861(92)90693-q. [DOI] [PubMed] [Google Scholar]
- Gluck S. L. The structure and biochemistry of the vacuolar H+ ATPase in proximal and distal urinary acidification. J Bioenerg Biomembr. 1992 Aug;24(4):351–359. doi: 10.1007/BF00762528. [DOI] [PubMed] [Google Scholar]
- Gogarten J. P., Fichmann J., Braun Y., Morgan L., Styles P., Taiz S. L., DeLapp K., Taiz L. The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell. 1992 Jul;4(7):851–864. doi: 10.1105/tpc.4.7.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
- Hurley D., Taiz L. Immunocytochemical Localization of the Vacuolar H-ATPase in Maize Root Tip Cells. Plant Physiol. 1989 Feb;89(2):391–395. doi: 10.1104/pp.89.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
- Kalinski A., Melroy D. L., Dwivedi R. S., Herman E. M. A soybean vacuolar protein (P34) related to thiol proteases is synthesized as a glycoprotein precursor during seed maturation. J Biol Chem. 1992 Jun 15;267(17):12068–12076. [PubMed] [Google Scholar]
- Kane P. M. Biogenesis of the yeast vacuolar H(+)-ATPase. J Exp Biol. 1992 Nov;172:93–103. doi: 10.1242/jeb.172.1.93. [DOI] [PubMed] [Google Scholar]
- Kane P. M., Stevens T. H. Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr. 1992 Aug;24(4):383–393. doi: 10.1007/BF00762531. [DOI] [PubMed] [Google Scholar]
- Maeshima M. Characterization of the major integral protein of vacuolar membrane. Plant Physiol. 1992 Apr;98(4):1248–1254. doi: 10.1104/pp.98.4.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandala S., Taiz L. Proton transport in isolated vacuoles from corn coleoptiles. Plant Physiol. 1985 May;78(1):104–109. doi: 10.1104/pp.78.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993 Jun;12(6):2241–2247. doi: 10.1002/j.1460-2075.1993.tb05877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Márquez-Sterling N., Herman I. M., Pesacreta T., Arai H., Terres G., Forgac M. Immunolocalization of the vacuolar-type (H+)-ATPase from clathrin-coated vesicles. Eur J Cell Biol. 1991 Oct;56(1):19–33. [PubMed] [Google Scholar]
- Nelson N. Structural conservation and functional diversity of V-ATPases. J Bioenerg Biomembr. 1992 Aug;24(4):407–414. doi: 10.1007/BF00762533. [DOI] [PubMed] [Google Scholar]
- Parry R. V., Turner J. C., Rea P. A. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem. 1989 Nov 25;264(33):20025–20032. [PubMed] [Google Scholar]
- Schumaker K. S., Sze H. A Ca/H Antiport System Driven by the Proton Electrochemical Gradient of a Tonoplast H-ATPase from Oat Roots. Plant Physiol. 1985 Dec;79(4):1111–1117. doi: 10.1104/pp.79.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starke T., Linkkila T. P., Gogarten J. P. Two separate genes encode the catalytic 70 kDa V-ATPase subunit in Psilotum and Equisetum. Z Naturforsch C. 1991 Jul-Aug;46(7-8):613–620. doi: 10.1515/znc-1991-7-818. [DOI] [PubMed] [Google Scholar]
- Sze H, Ward JM, Lai S, Perera I., I VACUOLAR-TYPE H+-TRANSLOCATING ATPases IN PLANT ENDOMEMBRANES: SUBUNIT ORGANIZATION AND MULTIGENE FAMILIES. J Exp Biol. 1992 Nov 1;172(Pt 1):123–135. doi: 10.1242/jeb.172.1.123. [DOI] [PubMed] [Google Scholar]
- Ward J. M., Reinders A., Hsu H. T., Sze H. Dissociation and Reassembly of the Vacuolar H-ATPase Complex from Oat Roots. Plant Physiol. 1992 May;99(1):161–169. doi: 10.1104/pp.99.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeuzem S., Zimmermann P., Schulz I. Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H(+)-ATPase. J Membr Biol. 1992 Feb;125(3):231–241. doi: 10.1007/BF00236436. [DOI] [PubMed] [Google Scholar]