Abstract
The herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was tested on mitochondria from etiolated pea (Pisum sativum L. cv Alaska) stems. This compound when used at micromolar concentrations ([almost equal to]20 [mu]M) inhibited malate- and succinate-dependent respiration by intact mitochondria but not oxidation of exogenously added NADH. Bromoxynil did not affect the activities of the succinic and the internal NADH dehydrogenases. Analyses of the effects induced by this herbicide on the membrane potential, [delta]pH, matrix Ca2+ movements, and dicarboxylate transport demonstrated that bromoxynil is likely to act as an inhibitor of the dicarboxylate carrier. In addition, bromoxynil caused a mild membrane uncoupling at concentrations [greater than or equal to]20 [mu]M. No effect on the ATPase activity was observed.
Full Text
The Full Text of this article is available as a PDF (542.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Huang C. S., Kopacz S. J., Lee C. P. Mechanistic differences in the energy-linked fluorescence decreases of 9-aminoacridine dyes associated with bovine heart submitochondrial membranes. Biochim Biophys Acta. 1983 Jan 13;722(1):107–115. doi: 10.1016/0005-2728(83)90163-9. [DOI] [PubMed] [Google Scholar]
- Merritt J. E., McCarthy S. A., Davies M. P., Moores K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. Biochem J. 1990 Jul 15;269(2):513–519. doi: 10.1042/bj2690513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmieri F., Prezioso G., Quagliariello E., Klingenberg M. Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur J Biochem. 1971 Sep 13;22(1):66–74. doi: 10.1111/j.1432-1033.1971.tb01515.x. [DOI] [PubMed] [Google Scholar]
- Papa S., Guerrieri F., Simone S., Lorusso M., Larosa D. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Biochim Biophys Acta. 1973 Jan 18;292(1):20–38. doi: 10.1016/0005-2728(73)90247-8. [DOI] [PubMed] [Google Scholar]
- Silva M. A., Carnieri E. G., Vercesi A. E. Calcium transport by corn mitochondria : evaluation of the role of phosphate. Plant Physiol. 1992 Feb;98(2):452–457. doi: 10.1104/pp.98.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. A. Quantitative intracellular calcium imaging with laser-scanning confocal microscopy. Cell Calcium. 1990 Oct;11(9):589–597. doi: 10.1016/0143-4160(90)90013-k. [DOI] [PubMed] [Google Scholar]
- Zoglowek C., Krömer S., Heldt H. W. Oxaloacetate and malate transport by plant mitochondria. Plant Physiol. 1988 May;87(1):109–115. doi: 10.1104/pp.87.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zottini M., Mandolino G., Zannoni D. Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris). Plant Physiol. 1993 Jun;102(2):579–585. doi: 10.1104/pp.102.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zottini M., Zannoni D. The Use of Fura-2 Fluorescence to Monitor the Movement of Free Calcium Ions into the Matrix of Plant Mitochondria (Pisum sativum and Helianthus tuberosus). Plant Physiol. 1993 Jun;102(2):573–578. doi: 10.1104/pp.102.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]