Abstract
The alternative oxidase (AOX) of plant mitochondria is encoded by the nuclear gene Aox1. Sense and antisense DNA constructs of Nicotiana tabacum Aox1 were introduced into tobacco, and transgenic plants with both increased and decreased levels of mitochondrial AOX protein were identified. Suspension cells derived from wild-type and transgenic plants were grown in heterotrophic batch culture. Transgenic cells with increased AOX protein had an increased capacity for cyanide-resistant, salicylhydroxamic acid-sensitive respiration compared to wild-type cells, whereas transgenic cells with decreased AOX protein had a decreased capacity for such respiration. Thus, genetic alteration of the level of AOX protein was sufficient to alter the capacity for electron transport through the alternative pathway. Under our standard growth conditions, "antisense" cells with dramatically reduced levels of AOX protein had growth and respiration rates similar to the wild type. However, whereas wild-type cells were able to grow under conditions that severely suppressed cytochrome pathway activity, antisense cells could not survive this treatment. This suggests that a critical function of AOX may be to support respiration when the cytochrome pathway is impaired. The much higher level of AOX protein in "sense" cells compared to the wild type did not appreciably alter the steady-state partitioning of electrons between the cytochrome path and the alternative pathway in vivo, suggesting that this partitioning may be subject to additional regulatory factors.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Conley C. A., Hanson M. R. Tissue-Specific Protein Expression in Plant Mitochondria. Plant Cell. 1994 Jan;6(1):85–91. doi: 10.1105/tpc.6.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day D. A., Dry I. B., Soole K. L., Wiskich J. T., Moore A. L. Regulation of Alternative Pathway Activity in Plant Mitochondria : Deviations from Q-Pool Behavior during Oxidation of NADH and Quinols. Plant Physiol. 1991 Mar;95(3):948–953. doi: 10.1104/pp.95.3.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dry I. B., Moore A. L., Day D. A., Wiskich J. T. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys. 1989 Aug 15;273(1):148–157. doi: 10.1016/0003-9861(89)90173-2. [DOI] [PubMed] [Google Scholar]
- Jolivet Y., Pireaux J. C., Dizengremel P. Changes in Properties of Barley Leaf Mitochondria Isolated from NaCl-Treated Plants. Plant Physiol. 1990 Oct;94(2):641–646. doi: 10.1104/pp.94.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapulnik Y., Yalpani N., Raskin I. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol. 1992 Dec;100(4):1921–1926. doi: 10.1104/pp.100.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh L. Molecular biology of the alternative oxidase. Plant Physiol. 1994 Jul;105(3):781–786. doi: 10.1104/pp.105.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
- Nellen W., Lichtenstein C. What makes an mRNA anti-sense-itive? Trends Biochem Sci. 1993 Nov;18(11):419–423. doi: 10.1016/0968-0004(93)90137-c. [DOI] [PubMed] [Google Scholar]
- Palet A., Ribas-Carbó M., Argilés J. M., Azcón-Bieto J. Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol. 1991 Jun;96(2):467–472. doi: 10.1104/pp.96.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson S. A., Yakir D., Ribas-Carbo M., Giles L., Osmond C. B., Siedow J. N., Berry J. A. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination. Plant Physiol. 1992 Nov;100(3):1087–1091. doi: 10.1104/pp.100.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanlerberghe G. C., McIntosh L. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco. Plant Physiol. 1992 Dec;100(4):1846–1851. doi: 10.1104/pp.100.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanlerberghe G. C., McIntosh L. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol. 1992 Sep;100(1):115–119. doi: 10.1104/pp.100.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanlerberghe G. C., McIntosh L. Mitochondrial electron transport regulation of nuclear gene expression. Studies with the alternative oxidase gene of tobacco. Plant Physiol. 1994 Jul;105(3):867–874. doi: 10.1104/pp.105.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weger H. G., Guy R. D., Turpin D. H. Cytochrome and alternative pathway respiration in green algae : measurements using inhibitors and o(2) discrimination. Plant Physiol. 1990 May;93(1):356–360. doi: 10.1104/pp.93.1.356. [DOI] [PMC free article] [PubMed] [Google Scholar]