Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1511–1520. doi: 10.1104/pp.106.4.1511

A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.).

H Tuominen 1, A Ostin 1, G Sandberg 1, B Sundberg 1
PMCID: PMC159692  PMID: 12232425

Abstract

Metabolism of indole-3-acetic acid (IAA) in apical shoots of Populus tremula (L.) x Populus tremuloides (Michx.) was investigated by feeding a mixture of [12C]IAA, [13C6]IAA, and [1[prime]-14C]IAA through the base of the excised stem. HPLC of methanolic plant extracts revealed eight major radiolabeled metabolites after a 24-h incubation period. Comparison between feeds with [5-3H]IAA and [1[prime]-14C]IAA showed that all detectable metabolites were nondecarboxylative products. The purified radiolabeled HPLC fractions were screened by frit-fast atom bombardment liquid chromatography-mass spectrometry for compounds with characteristic fragment pairs originating from the application with 12C and 13C isotopes. Samples of interest were further characterized by gas chromatography-mass spectrometry. Using this procedure, oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp), oxindole-3-acetyl-N-aspartic acid (OxIAAsp), and ring-hydroxylated oxindole-3-acetic acid were all identified as IAA metabolites. Furthermore, a novel metabolic pathway from IAA via IAAsp and OxIAAsp to OxIAA was established on the basis of refeeding experiments with the different IAA metabolites.

Full Text

The Full Text of this article is available as a PDF (932.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bialek K., Meudt W. J., Cohen J. D. Indole-3-acetic Acid (IAA) and IAA Conjugates Applied to Bean Stem Sections: IAA Content and the Growth Response. Plant Physiol. 1983 Sep;73(1):130–134. doi: 10.1104/pp.73.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Catalá C., Ostin A., Chamarro J., Sandberg G., Crozier A. Metabolism of Indole-3-Acetic Acid by Pericarp Discs from Immature and Mature Tomato (Lycopersicon esculentum Mill). Plant Physiol. 1992 Nov;100(3):1457–1463. doi: 10.1104/pp.100.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen J. D. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. Plant Physiol. 1982 Sep;70(3):749–753. doi: 10.1104/pp.70.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daly J. W., Witkop B. Selective exchange of nuclear protons in hydroxyindoles. J Am Chem Soc. 1967 Feb 15;89(4):1032–1033. doi: 10.1021/ja00980a054. [DOI] [PubMed] [Google Scholar]
  5. Ehmann A. The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr. 1977 Feb 11;132(2):267–276. doi: 10.1016/s0021-9673(00)89300-0. [DOI] [PubMed] [Google Scholar]
  6. Feung C. S., Hamilton R. H., Mumma R. O. Metabolism of Indole-3-acetic Acid: IV. Biological Properties of Amino Acid Conjugates. Plant Physiol. 1977 Jan;59(1):91–93. doi: 10.1104/pp.59.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hangarter R. P., Peterson M. D., Good N. E. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 1980 May;65(5):761–767. doi: 10.1104/pp.65.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lewer P. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism. J Chem Soc Perkin 1. 1987 Apr;1987(4):753–757. doi: 10.1039/p19870000753. [DOI] [PubMed] [Google Scholar]
  9. Nonhebel H. M., Bandurski R. S. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings. Plant Physiol. 1984;76:979–983. doi: 10.1104/pp.76.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nonhebel H. M., Kruse L. I., Bandurski R. S. Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-beta-D-glucopyranoside. J Biol Chem. 1985 Oct 15;260(23):12685–12689. [PubMed] [Google Scholar]
  11. Ostin A., Monteiro A. M., Crozier A., Jensen E., Sandberg G. Analysis of Indole-3-Acetic Acid Metabolites from Dalbergia dolichopetala by High Performance Liquid Chromatography-Mass Spectrometry. Plant Physiol. 1992 Sep;100(1):63–68. doi: 10.1104/pp.100.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reinecke D. M., Bandurski R. S. Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid. Biochem Biophys Res Commun. 1981 Nov 30;103(2):429–433. doi: 10.1016/0006-291x(81)90470-8. [DOI] [PubMed] [Google Scholar]
  13. Riov J., Bangerth F. Metabolism of Auxin in Tomato Fruit Tissue: Formation of High Molecular Weight Conjugates of Oxindole-3-Acetic Acid via the Oxidation of Indole-3-Acetylaspartic Acid. Plant Physiol. 1992 Nov;100(3):1396–1402. doi: 10.1104/pp.100.3.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sitbon F., Ostin A., Sundberg B., Olsson O., Sandberg G. Conjugation of Indole-3-Acetic Acid (IAA) in Wild-Type and IAA-Overprodcing Transgenic Tobacco Plants, and Identification of the Main Conjugates by Frit-Fast Atom Bombardment Liquid Chromatography-Mass Spectrometry. Plant Physiol. 1993 Jan;101(1):313–320. doi: 10.1104/pp.101.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Venis M. A. Auxin-induced Conjugation Systems in Peas. Plant Physiol. 1972 Jan;49(1):24–27. doi: 10.1104/pp.49.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES