Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1547–1553. doi: 10.1104/pp.106.4.1547

Release of Photosynthetic Protein Catabolites by Blebbing from Thylakoids.

S Ghosh 1, K A Hudak 1, E B Dumbroff 1, J E Thompson 1
PMCID: PMC159697  PMID: 12232430

Abstract

Thylakoid proteins and their catabolites have been detected in lipid-protein particles isolated from the stroma of intact chloroplasts obtained from primary leaves of 2-week-old bean seedlings (Phaseolus vulgaris L. cv Kinghorn). The lipid-protein particles bear morphological resemblance to plastoglobuli seen in the chloroplasts of senescing leaves, but they are much smaller. They range from 10 to 320 nm in radius, are uniformly stained in thin sections visualized by transmission electron microscopy, and are discernible in the stroma of chloroplasts in corresponding thin-sectioned leaf tissue. The lipid-protein particles contain thylakoid lipids and are enriched in free fatty acids. Specifically, the free-to-esterified fatty acid ratio is about 1:1 in the particles compared to only 1:18 for corresponding thylakoid membranes. Western blot analyses indicate that these particles also contain thylakoid proteins and, in some cases, catabolites of these proteins including the CF1 [beta] and [gamma] subunits of ATPase, cytochrome f, and the 31- and 33-kD proteins of PSII. Lipid-protein particles with similar properties were generated in vitro from isolated, light-stressed thylakoids. Collectively, these data suggest that blebbing of lipid-protein particles may be a means of removing potentially destabilizing macromolecular catabolites from thylakoid membrane bilayers.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Low M. G., Finean J. B., Michell R. H. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):309–316. doi: 10.1016/0005-2736(75)90116-9. [DOI] [PubMed] [Google Scholar]
  3. Aro E. M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta. 1993 Jul 5;1143(2):113–134. doi: 10.1016/0005-2728(93)90134-2. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Ghosh S., Gepstein S., Glick B. R., Heikkila J. J., Dumbroff E. B. Thermal regulation of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in c(3) and c(4) plants native to hot and temperate climates. Plant Physiol. 1989 Aug;90(4):1298–1304. doi: 10.1104/pp.90.4.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghosh S., Gepstein S., Heikkila J. J., Dumbroff E. B. Use of a scanning densitometer or an ELISA plate reader for measurement of nanogram amounts of protein in crude extracts from biological tissues. Anal Biochem. 1988 Mar;169(2):227–233. doi: 10.1016/0003-2697(88)90278-3. [DOI] [PubMed] [Google Scholar]
  7. Girotti A. W. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr;51(4):497–509. doi: 10.1111/j.1751-1097.1990.tb01744.x. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Pardo A. D., Chereskin B. M., Castelfranco P. A., Franceschi V. R., Wezelman B. E. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. doi: 10.1104/pp.65.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schuster G., Even D., Kloppstech K., Ohad I. Evidence for protection by heat-shock proteins against photoinhibition during heat-shock. EMBO J. 1988 Jan;7(1):1–6. doi: 10.1002/j.1460-2075.1988.tb02776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES