Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Dec;106(4):1583–1592. doi: 10.1104/pp.106.4.1583

Use of a Gouy-Chapman-Stern Model for Membrane-Surface Electrical Potential to Interpret Some Features of Mineral Rhizotoxicity.

T B Kinraide 1
PMCID: PMC159701  PMID: 12232433

Abstract

A consideration of mineral toxicity to roots only in terms of ion activities in the rooting medium can be misleading. A Gouy-Chapman-Stern model, by which relative ion activities at cell-membrane surfaces may be estimated, has been applied to problems of mineral rhizotoxicity, including the toxicity of Al3+, La3+, H+, Na+, and SeO42-, to wheat (Triticum aestivum L.) roots. The Gouy-Chapman portion of the model is expressed in the Grahame equation, which relates the charge density ([sigma]) and electrical potential (E0) at the surface of a membrane to the concentrations of ions in a contracting bulk solution. The Stern modification of the theory takes into account changes in [sigma] caused by ion binding at the membrane surface. Several theoretical problems with the model and its use are considered, including the fact that previous authors have usually related the physiological effects of an ion at a membrane surface to the computed concentration (Ci0) of the unbound ion rather than its computed activity (ai0). This practice implies the false assumption that Ci0 is proportional to ai0. It is demonstrated here that ai0, computed from external activities (ai[infinity symbol]) by a Nernst equation [ai0 = ai[infinity symbol]exp([mdash]ZiFE0/RT), where Zi is the charge on the ion, F is the Faraday constant, R is the gas constant, and T is the temperature], correlates well with ion toxicity and that Ci0 sometimes correlates poorly. These conclusions also apply to issues of mineral nutrition.

Full Text

The Full Text of this article is available as a PDF (847.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akeson M. A., Munns D. N., Burau R. G. Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim Biophys Acta. 1989 Nov 17;986(1):33–40. doi: 10.1016/0005-2736(89)90269-1. [DOI] [PubMed] [Google Scholar]
  2. Barber J. Membrane surface charges and potentials in relation to photosynthesis. Biochim Biophys Acta. 1980 Dec;594(4):253–308. doi: 10.1016/0304-4173(80)90003-8. [DOI] [PubMed] [Google Scholar]
  3. Bentz J., Alford D., Cohen J., Düzgüneş N. La3+-induced fusion of phosphatidylserine liposomes. Close approach, intermembrane intermediates, and the electrostatic surface potential. Biophys J. 1988 Apr;53(4):593–607. doi: 10.1016/S0006-3495(88)83138-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ding J. P., Badot P-M, Pickard B. G. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel. Aust J Plant Physiol. 1993;20:771–778. doi: 10.1071/pp9930771. [DOI] [PubMed] [Google Scholar]
  6. Gibrat R., Grouzis J. P., Rigaud J., Galtier N., Grignon C. Electrostatic analysis of effects of ions on the inhibition of corn root plasma membrane Mg2+-ATPase by the bivalent orthovanadate. Biochim Biophys Acta. 1989 Feb 13;979(1):46–52. doi: 10.1016/0005-2736(89)90521-x. [DOI] [PubMed] [Google Scholar]
  7. Kinraide T. B., Ryan P. R., Kochian L. V. Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 1992 Aug;99(4):1461–1468. doi: 10.1104/pp.99.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lau A., McLaughlin A., McLaughlin S. The adsorption of divalent cations to phosphatidylglycerol bilayer membranes. Biochim Biophys Acta. 1981 Jul 20;645(2):279–292. doi: 10.1016/0005-2736(81)90199-1. [DOI] [PubMed] [Google Scholar]
  9. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  11. Nichol B. E., Oliveira L. A., Glass ADM., Siddiqi M. Y. The Effects of Aluminum on the Influx of Calcium, Potassium, Ammonium, Nitrate, and Phosphate in an Aluminum-Sensitive Cultivar of Barley (Hordeum vulgare L.). Plant Physiol. 1993 Apr;101(4):1263–1266. doi: 10.1104/pp.101.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohki S., Kurland R. Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding. Biochim Biophys Acta. 1981 Jul 20;645(2):170–176. doi: 10.1016/0005-2736(81)90187-5. [DOI] [PubMed] [Google Scholar]
  13. Tocanne J. F., Teissié J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta. 1990 Feb 28;1031(1):111–142. doi: 10.1016/0304-4157(90)90005-w. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES