Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Feb;1(2):191–200. doi: 10.1105/tpc.1.2.191

Actin Localization during Fucus Embryogenesis.

D L Kropf 1, S K Berge 1, R S Quatrano 1
PMCID: PMC159751  PMID: 12359891

Abstract

Embryogenesis in the Fucales serves as a model system for studying the acquisition of cellular and developmental polarity. Fertilized eggs bear no asymmetry, yet within 16 hours, a developmental axis is formed and the unicellular zygote germinates in accordance with this axis. Microfilaments (actin) play a crucial role in establishing the axis as evidenced by the inhibitory effects of cytochalasins on axis fixation. The cellular content of actin was determined by immunoblot, whereas the localization of F-actin was investigated using the fluorescent probe rhodamine phalloidin. Three isoforms of actin were detected in constant amounts at all developmental stages. Actin networks were found to be distributed uniformly in eggs and zygotes through the period of early zygote development when the polar axis was formed. However, as the polar axis became irreversibly fixed in space, actin was localized at the presumptive germination site by a cytochalasin-sensitive process. This correlation supports the proposal that actin networks play a critical role in axis fixation, and is consistent with our hypothesis that this process involves stabilization of membrane components by transmembrane bridges from the cell wall to the microfilament cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A. E., Pringle J. R. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 1984 Mar;98(3):934–945. doi: 10.1083/jcb.98.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brawley S. H., Quatrano R. S. Sulfation of fucoidin in Fucus embryos. IV. Autoradiographic investigations of fucoidin sulfation and secretion during differentiation and the effect of cytochalasin treatment. Dev Biol. 1979 Dec;73(2):193–205. doi: 10.1016/0012-1606(79)90063-0. [DOI] [PubMed] [Google Scholar]
  3. Brawley S. H., Robinson K. R. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell Biol. 1985 Apr;100(4):1173–1184. doi: 10.1083/jcb.100.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bray D., White J. G. Cortical flow in animal cells. Science. 1988 Feb 19;239(4842):883–888. doi: 10.1126/science.3277283. [DOI] [PubMed] [Google Scholar]
  5. Dancker P., Löw I., Hasselbach W., Wieland T. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta. 1975 Aug 19;400(2):407–414. doi: 10.1016/0005-2795(75)90196-8. [DOI] [PubMed] [Google Scholar]
  6. Durica D. S., Crain W. R., Jr Analysis of actin synthesis in early sea urchin development. Dev Biol. 1982 Aug;92(2):428–439. doi: 10.1016/0012-1606(82)90188-9. [DOI] [PubMed] [Google Scholar]
  7. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  8. Hoch H. C., Staples R. C. Visualization of actin in situ by rhodamine-conjugated phalloin in the fungus Uromyces phaseoli. Eur J Cell Biol. 1983 Nov;32(1):52–58. [PubMed] [Google Scholar]
  9. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  10. Jaffe L. F., Neuscheler W. On the mutual polarization of nearby pairs of fucaceous eggs. Dev Biol. 1969 Jun;19(6):549–565. doi: 10.1016/0012-1606(69)90037-2. [DOI] [PubMed] [Google Scholar]
  11. Kropf D. L., Kloareg B., Quatrano R. S. Cell wall is required for fixation of the embryonic axis in Fucus zygotes. Science. 1988 Jan 8;239(4836):187–190. doi: 10.1126/science.3336780. [DOI] [PubMed] [Google Scholar]
  12. Lee J. J., Shott R. J., Rose S. J., 3rd, Thomas T. L., Britten R. J., Davidson E. H. Sea urchin actin gene subtypes. Gene number, linkage and evolution. J Mol Biol. 1984 Jan 15;172(2):149–176. doi: 10.1016/s0022-2836(84)80035-2. [DOI] [PubMed] [Google Scholar]
  13. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  14. McCurdy D. W., Williamson R. E. An actin-related protein inside pea chloroplasts. J Cell Sci. 1987 Apr;87(Pt 3):449–456. doi: 10.1242/jcs.87.3.449. [DOI] [PubMed] [Google Scholar]
  15. Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
  16. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  17. Palevitz B. A. Actin in the preprophase band of Allium cepa. J Cell Biol. 1987 Jun;104(6):1515–1519. doi: 10.1083/jcb.104.6.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palevitz B. A., Ash J. F., Hepler P. K. Actin in the green alga, Nitella. Proc Natl Acad Sci U S A. 1974 Feb;71(2):363–366. doi: 10.1073/pnas.71.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Picton J. M., Steer M. W. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci. 1981 Jun;49:261–272. doi: 10.1242/jcs.49.1.261. [DOI] [PubMed] [Google Scholar]
  20. Piperno G., Luck D. J. An actin-like protein is a component of axonemes from Chlamydomonas flagella. J Biol Chem. 1979 Apr 10;254(7):2187–2190. [PubMed] [Google Scholar]
  21. Quatrano R. S., Griffing L. R., Huber-Walchli V., Doubet R. S. Cytological and biochemical requirements for the establishment of a polar cell. J Cell Sci Suppl. 1985;2:129–141. doi: 10.1242/jcs.1985.supplement_2.7. [DOI] [PubMed] [Google Scholar]
  22. Quatrano R. S. Separation of processes associated with differentiation of two-celled Fucus embryos. Dev Biol. 1973 Jan;30(1):209–213. doi: 10.1016/0012-1606(73)90059-6. [DOI] [PubMed] [Google Scholar]
  23. Quatrano R. S., Stevens P. T. Cell wall assembly in fucus zygotes: I. Characterization of the polysaccharide components. Plant Physiol. 1976 Aug;58(2):224–231. doi: 10.1104/pp.58.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmit A. C., Lambert A. M. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis. J Cell Biol. 1987 Nov;105(5):2157–2166. doi: 10.1083/jcb.105.5.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seagull R. W., Falconer M. M., Weerdenburg C. A. Microfilaments: dynamic arrays in higher plant cells. J Cell Biol. 1987 Apr;104(4):995–1004. doi: 10.1083/jcb.104.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shah D. M., Hightower R. C., Meagher R. B. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet. 1983;2(1):111–126. [PubMed] [Google Scholar]
  27. Wieland T., Govindan V. M. Phallotoxins bind to actins. FEBS Lett. 1974 Sep 15;46(1):351–353. doi: 10.1016/0014-5793(74)80404-7. [DOI] [PubMed] [Google Scholar]
  28. Williamson R. E., McCurdy D. W., Hurley U. A., Perkin J. L. Actin of chara giant internodal cells: a single isoform in the subcortical filament bundles and a larger, immunologically related protein in the chloroplasts. Plant Physiol. 1987 Sep;85(1):268–272. doi: 10.1104/pp.85.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES