Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1989 Apr;1(4):391–401. doi: 10.1105/tpc.1.4.391

Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants.

B G Forde 1, H M Day 1, J F Turton 1, W J Shen 1, J V Cullimore 1, J E Oliver 1
PMCID: PMC159771  PMID: 2577727

Abstract

The gln-gamma gene, which specifies the gamma subunit of glutamine synthetase in Phaseolus vulgaris L., has been isolated and the regulatory properties of its promoter region analyzed in transgenic Lotus corniculatus plants. A 2-kilobase fragment from the 5'-flanking region of gln-gamma conferred a strongly nodule-enhanced pattern of expression on the beta-glucuronidase reporter gene. Parallel studies on the promoter of another glutamine synthetase gene (gln-beta) showed that a 1.7-kilobase fragment directed 20-fold to 140-fold higher levels of beta-glucuronidase expression in roots than in shoots. Histochemical localization of beta-glucuronidase activity in nodules of the transgenic plants indicated that the chimeric gln-gamma gene was expressed specifically in the rhizobially infected cells; expression of the gln-beta construct was detected in both cortical and infected regions of young nodules, and became restricted to the vascular tissue as the nodule matured. We conclude that gln-beta and gln-gamma genes are differentially expressed both temporally and spatially in plant development and that the cis-acting regulatory elements responsible for conferring these contrasting expression patterns are located within a 2-kilobase region upstream of their coding sequences.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D. C., McKnight T. D., Williams B. G. A simplified and efficient vector-primer cDNA cloning system. Gene. 1984 Nov;31(1-3):79–89. doi: 10.1016/0378-1119(84)90197-5. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cullimore J. V., Gebhardt C., Saarelainen R., Miflin B. J., Idler K. B., Barker R. F. Glutamine synthetase of Phaseolus vulgaris L.: organ-specific expression of a multigene family. J Mol Appl Genet. 1984;2(6):589–599. [PubMed] [Google Scholar]
  5. Dean C., Jones J., Favreau M., Dunsmuir P., Bedbrook J. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res. 1988 Oct 11;16(19):9267–9283. doi: 10.1093/nar/16.19.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn K., Dickstein R., Feinbaum R., Burnett B. K., Peterman T. K., Thoidis G., Goodman H. M., Ausubel F. M. Developmental regulation of nodule-specific genes in alfalfa root nodules. Mol Plant Microbe Interact. 1988 Feb;1(2):66–74. doi: 10.1094/mpmi-1-066. [DOI] [PubMed] [Google Scholar]
  8. FAHRAEUS G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957 Apr;16(2):374–381. doi: 10.1099/00221287-16-2-374. [DOI] [PubMed] [Google Scholar]
  9. Fortin M. G., Zelechowska M., Verma D. P. Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J. 1985 Dec 1;4(12):3041–3046. doi: 10.1002/j.1460-2075.1985.tb04043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gebhardt C., Oliver J. E., Forde B. G., Saarelainen R., Miflin B. J. Primary structure and differential expression of glutamine synthetase genes in nodules, roots and leaves of Phaseolus vulgaris. EMBO J. 1986 Jul;5(7):1429–1435. doi: 10.1002/j.1460-2075.1986.tb04379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobs F. A., Zhang M., Fortin M. G., Verma D. P. Several nodulins of soybean share structural domains but differ in their subcellular locations. Nucleic Acids Res. 1987 Feb 11;15(3):1271–1280. doi: 10.1093/nar/15.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jørgensen J. E., Stougaard J., Marcker A., Marcker K. A. Root nodule specific gene regulation: analysis of the soybean nodulin N23 gene promoter in heterologous symbiotic systems. Nucleic Acids Res. 1988 Jan 11;16(1):39–50. doi: 10.1093/nar/16.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knight T. J., Langston-Unkefer P. J. Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science. 1988 Aug 19;241(4868):951–954. doi: 10.1126/science.241.4868.951. [DOI] [PubMed] [Google Scholar]
  16. McNally S. F., Hirel B., Gadal P., Mann A. F., Stewart G. R. Glutamine Synthetases of Higher Plants : Evidence for a Specific Isoform Content Related to Their Possible Physiological Role and Their Compartmentation within the Leaf. Plant Physiol. 1983 May;72(1):22–25. doi: 10.1104/pp.72.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murphy G., Kavanagh T. Speeding-up the sequencing of double-stranded DNA. Nucleic Acids Res. 1988 Jun 10;16(11):5198–5198. doi: 10.1093/nar/16.11.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ooms G., Hooykaas P. J., Moolenaar G., Schilperoort R. A. Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene. 1981 Jun-Jul;14(1-2):33–50. doi: 10.1016/0378-1119(81)90146-3. [DOI] [PubMed] [Google Scholar]
  19. Robert F. M., Wong P. P. Isozymes of Glutamine Synthetase in Phaseolus vulgaris L. and Phaseolus lunatus L. Root Nodules. Plant Physiol. 1986 May;81(1):142–148. doi: 10.1104/pp.81.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stougaard J., Sandal N. N., Grøn A., Kühle A., Marcker K. A. 5' Analysis of the soybean leghaemoglobin lbc(3) gene: regulatory elements required for promoter activity and organ specificity. EMBO J. 1987 Dec 1;6(12):3565–3569. doi: 10.1002/j.1460-2075.1987.tb02686.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turton J. F., Hopley A. P., Forde B. G. 5'-flanking sequence of a glutamine synthetase gene specifying the beta subunit of the cytosolic enzyme from Phaseolus vulgaris L. Nucleic Acids Res. 1988 Dec 9;16(23):11367–11367. doi: 10.1093/nar/16.23.11367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Verma D. P., Bal A. K. Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3843–3847. doi: 10.1073/pnas.73.11.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES