Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Jun;1(6):609–621. doi: 10.1105/tpc.1.6.609

Cotyledon nuclear proteins bind to DNA fragments harboring regulatory elements of phytohemagglutinin genes.

C D Riggs 1, T A Voelker 1, M J Chrispeels 1
PMCID: PMC159796  PMID: 2535513

Abstract

The effects of deleting DNA sequences upstream from the phytohemagglutinin-L gene of Phaseolus vulgaris have been examined with respect to the level of gene product produced in the seeds of transgenic tobacco. Our studies indicate that several upstream regions quantitatively modulate expression. Between -1000 and -675, a negative regulatory element reduces expression approximately threefold relative to shorter deletion mutants that do not contain this region. Positive regulatory elements lie between -550 and -125 and, compared with constructs containing only 125 base pairs of upstream sequences (-125), the presence of these two regions can be correlated with a 25-fold and a 200-fold enhancement of phytohemagglutinin-L levels. These experiments were complemented by gel retardation assays, which demonstrated that two of the three regions bind cotyledon nuclear proteins from mid-mature seeds. One of the binding sites maps near a DNA sequence that is highly homologous to protein binding domains located upstream from the soybean seed lectin and Kunitz trypsin inhibitor genes. Competition experiments demonstrated that the upstream regions of a bean beta-phaseolin gene, the soybean seed lectin gene, and an oligonucleotide from the upstream region of the trypsin inhibitor gene can compete differentially for factor binding. We suggest that these legume genes may be regulated in part by evolutionarily conserved protein/DNA interactions.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Castresana C., Garcia-Luque I., Alonso E., Malik V. S., Cashmore A. R. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J. 1988 Jul;7(7):1929–1936. doi: 10.1002/j.1460-2075.1988.tb03030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chappell J., Chrispeels M. J. Transcriptional and Posttranscriptional Control of Phaseolin and Phytohemagglutinin Gene Expression in Developing Cotyledons of Phaseolus vulgaris. Plant Physiol. 1986 May;81(1):50–54. doi: 10.1104/pp.81.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen Z. L., Pan N. S., Beachy R. N. A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. EMBO J. 1988 Feb;7(2):297–302. doi: 10.1002/j.1460-2075.1988.tb02812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Z. L., Schuler M. A., Beachy R. N. Functional analysis of regulatory elements in a plant embryo-specific gene. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8560–8564. doi: 10.1073/pnas.83.22.8560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colot V., Robert L. S., Kavanagh T. A., Bevan M. W., Thompson R. D. Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J. 1987;6(12):3559–3564. doi: 10.1002/j.1460-2075.1987.tb02685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickinson C. D., Evans R. P., Nielsen N. C. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res. 1988 Jan 11;16(1):371–371. doi: 10.1093/nar/16.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle J. J., Schuler M. A., Godette W. D., Zenger V., Beachy R. N., Slightom J. L. The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. Structural homologies of genes and proteins. J Biol Chem. 1986 Jul 15;261(20):9228–9238. [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Hoffman L. M., Donaldson D. D. Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome. EMBO J. 1985 Apr;4(4):883–889. doi: 10.1002/j.1460-2075.1985.tb03714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jofuku K. D., Okamuro J. K., Goldberg R. B. Interaction of an embryo DNA binding protein with a soybean lectin gene upstream region. Nature. 1987 Aug 20;328(6132):734–737. doi: 10.1038/328734a0. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Luthe D. S., Quatrano R. S. Transcription in Isolated Wheat Nuclei: I. ISOLATION OF NUCLEI AND ELIMINATION OF ENDOGENOUS RIBONUCLEASE ACTIVITY. Plant Physiol. 1980 Feb;65(2):305–308. doi: 10.1104/pp.65.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ow D. W., DE Wet J. R., Helinski D. R., Howell S. H., Wood K. V., Deluca M. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science. 1986 Nov 14;234(4778):856–859. doi: 10.1126/science.234.4778.856. [DOI] [PubMed] [Google Scholar]
  16. Shirsat A., Wilford N., Croy R., Boulter D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet. 1989 Jan;215(2):326–331. doi: 10.1007/BF00339737. [DOI] [PubMed] [Google Scholar]
  17. Staswick P., Chrispeels M. J. Expression of lectin genes during seed development in normal and phytohemagglutinin-deficient cultivars of Phaseolus vulgaris. J Mol Appl Genet. 1984;2(6):525–535. [PubMed] [Google Scholar]
  18. Voelker T. A., Herman E. M., Chrispeels M. J. In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell. 1989 Jan;1(1):95–104. doi: 10.1105/tpc.1.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Voelker T. A., Staswick P., Chrispeels M. J. Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J. 1986 Dec 1;5(12):3075–3082. doi: 10.1002/j.1460-2075.1986.tb04613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voelker T., Sturm A., Chrispeels M. J. Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J. 1987 Dec 1;6(12):3571–3577. doi: 10.1002/j.1460-2075.1987.tb02687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES