Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Aug;1(8):775–782. doi: 10.1105/tpc.1.8.775

Rice Phytochrome Is Biologically Active in Transgenic Tobacco.

S A Kay 1, A Nagatani 1, B Keith 1, M Deak 1, M Furuya 1, N H Chua 1
PMCID: PMC159815  PMID: 12359911

Abstract

To investigate the mechanisms of phytochrome action in vivo, we have overexpressed rice phytochrome in transgenic tobacco plants. A full-length rice phytochrome cDNA was fused to the cauliflower mosaic virus 35S promoter and transferred to tobacco. The progeny of some of the transgenic plants contain large amounts of rice phytochrome mRNA in green leaves. Extracts prepared from overexpressing plants contain twofold to fivefold more spectrophotometrically detectable phytochrome than extracts from control plants. Species-specific, anti-phytochrome monoclonal antibodies were used in immunoblots to discriminate between rice and tobacco phytochrome apoproteins in fractions eluted from a DEAE-Sepharose column. Red minus far-red difference spectra of the partially purified rice phytochrome from the transgenic plants indicate that the rice phytochrome assembles with chromophore and is photoreversible. Analysis of the circadian pattern of Cab mRNA levels in transgenic plants versus controls demonstrates that the overproduction of rice phytochrome extends the duration of the free-running rhythm of Cab gene expression. The rice phytochrome is, therefore, biologically active in the transgenic tobacco plant, which establishes a system for in vivo functional analysis of phytochrome.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kay S. A., Keith B., Shinozaki K., Chye M. L., Chua N. H. The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5' upstream region. Plant Cell. 1989 Mar;1(3):351–360. doi: 10.1105/tpc.1.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Keller J. M., Shanklin J., Vierstra R. D., Hershey H. P. Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J. 1989 Apr;8(4):1005–1012. doi: 10.1002/j.1460-2075.1989.tb03467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lamppa G., Nagy F., Chua N. H. Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature. 1985 Aug 22;316(6030):750–752. doi: 10.1038/316750a0. [DOI] [PubMed] [Google Scholar]
  4. Nagy F., Kay S. A., Chua N. H. Gene regulation by phytochrome. Trends Genet. 1988 Feb;4(2):37–42. doi: 10.1016/0168-9525(88)90064-9. [DOI] [PubMed] [Google Scholar]
  5. Odell J. T., Nagy F., Chua N. H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 1985 Feb 28-Mar 6Nature. 313(6005):810–812. doi: 10.1038/313810a0. [DOI] [PubMed] [Google Scholar]
  6. Sharrock R. A., Lissemore J. L., Quail P. H. Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone: identification of conserved features by comparison with Avena phytochrome. Gene. 1986;47(2-3):287–295. doi: 10.1016/0378-1119(86)90072-7. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES