Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Sep;1(9):881–887. doi: 10.1105/tpc.1.9.881

Pathogenesis-related proteins are developmentally regulated in tobacco flowers.

T Lotan 1, N Ori 1, R Fluhr 1
PMCID: PMC159824  PMID: 2535528

Abstract

The accumulation of pathogenesis-related proteins (PR) in tobacco leaves has been casually related to pathogen and specific physiological stresses. The known enzymatic function of some of these proteins is potentially antimicrobial. By using antibodies specific to three classes of pathogenesis-related proteins, we examined tobacco plants during their normal growth. The pathogenesis-related proteins accumulated during the normal development of the tobacco flower. The PR-1 class of proteins (biological function unknown) is located in sepal tissue. PR-P, Q polypeptides are endochitinases and are present in pedicels, sepals, anthers, and ovaries. A glycoprotein serologically related to the PR-2,N,O class is a (1,3)-beta-glucanase and is present in pistils. Differential appearance during flower development, in situ localization, and post-translational processing of floral pathogenesis-related proteins point to a hitherto unsuspected function these classes of pathogenesis-related proteins play in the normal process of flowering and reproductive physiology.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cornelissen B. J., Horowitz J., van Kan J. A., Goldberg R. B., Bol J. F. Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Res. 1987 Sep 11;15(17):6799–6811. doi: 10.1093/nar/15.17.6799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kombrink E., Schröder M., Hahlbrock K. Several "pathogenesis-related" proteins in potato are 1,3-beta-glucanases and chitinases. Proc Natl Acad Sci U S A. 1988 Feb;85(3):782–786. doi: 10.1073/pnas.85.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  4. Memelink J., Hoge J. H., Schilperoort R. A. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J. 1987 Dec 1;6(12):3579–3583. doi: 10.1002/j.1460-2075.1987.tb02688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pfitzner U. M., Goodman H. M. Isolation and characterization of cDNA clones encoding pathogenesis-related proteins from tobacco mosaic virus infected tobacco plants. Nucleic Acids Res. 1987 Jun 11;15(11):4449–4465. doi: 10.1093/nar/15.11.4449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rigden J., Coutts R. Pathogenesis-related proteins in plants. Trends Genet. 1988 Apr;4(4):87–89. doi: 10.1016/0168-9525(88)90091-1. [DOI] [PubMed] [Google Scholar]
  7. Shinshi H., Mohnen D., Meins F. Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987 Jan;84(1):89–93. doi: 10.1073/pnas.84.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Thotakura N. R., Bahl O. P. Enzymatic deglycosylation of glycoproteins. Methods Enzymol. 1987;138:350–359. doi: 10.1016/0076-6879(87)38030-9. [DOI] [PubMed] [Google Scholar]
  9. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES