Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Sep;1(9):945–952. doi: 10.1105/tpc.1.9.945

Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes.

K Datta 1, A Schmidt 1, A Marcus 1
PMCID: PMC159830  PMID: 2535534

Abstract

We have resolved and analyzed two proline-rich proteins isolated from the walls of soybean cells in culture. The proteins are similar in amino acid content, containing 20% proline, 20% hydroxyproline, 20% lysine, 16% valine, 10% tyrosine, and 10% glutamate. The proteins undergo a rearrangement or a limited cleavage in dilute NaOH, but are otherwise remarkably stable to a high concentration of alkali. We have cloned and sequenced a cDNA from soybean axes germinated for 31 hours (1A10-2) coding for a protein that closely corresponds in its amino acid content to that of the proline-rich proteins. The cDNA sequence predicts a decameric repeat of Pro-Pro-Val-Tyr-Lys-Pro-Pro-Val-Glu-Lys. Consequently, this class of proteins is referred to as repetitive proline-rich proteins, i.e., RPRP2 and RPRP3. We have also analyzed RNA gel blots with probes that discriminate between the new cDNA clone and a related cDNA previously reported [SbPRP1; Hong, Nagao, and Key (1987). J. Biol. Chem. 262, 8367-8376]. Messenger RNAs from young seedlings and from soybean suspension cultures correspond primarily to the new RPRP clone (1A10-2), whereas the predominant mRNA accumulating later in the roots corresponds to SbPRP1.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D. C. An efficient vector-primer cDNA cloning system. Methods Enzymol. 1987;154:41–64. doi: 10.1016/0076-6879(87)54069-1. [DOI] [PubMed] [Google Scholar]
  2. Alliotte T., Tiré C., Engler G., Peleman J., Caplan A., Van Montagu M., Inzé D. An Auxin-Regulated Gene of Arabidopsis thaliana Encodes a DNA-Binding Protein. Plant Physiol. 1989 Mar;89(3):743–752. doi: 10.1104/pp.89.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Averyhart-Fullard V., Datta K., Marcus A. A hydroxyproline-rich protein in the soybean cell wall. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1082–1085. doi: 10.1073/pnas.85.4.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassab G. I., Varner J. E. Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol. 1987 Dec;105(6 Pt 1):2581–2588. doi: 10.1083/jcb.105.6.2581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dean C., Tamaki S., Dunsmuir P., Favreau M., Katayama C., Dooner H., Bedbrook J. mRNA transcripts of several plant genes are polyadenylated at multiple sites in vivo. Nucleic Acids Res. 1986 Mar 11;14(5):2229–2240. doi: 10.1093/nar/14.5.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drapeau G. R. Cleavage at glutamic acid with staphylococcal protease. Methods Enzymol. 1977;47:189–191. doi: 10.1016/0076-6879(77)47023-x. [DOI] [PubMed] [Google Scholar]
  7. Ebeling W., Hennrich N., Klockow M., Metz H., Orth H. D., Lang H. Proteinase K from Tritirachium album Limber. Eur J Biochem. 1974 Aug 15;47(1):91–97. doi: 10.1111/j.1432-1033.1974.tb03671.x. [DOI] [PubMed] [Google Scholar]
  8. Foster J. A. Elastin structure and biosynthesis: an overview. Methods Enzymol. 1982;82(Pt A):559–570. doi: 10.1016/0076-6879(82)82087-9. [DOI] [PubMed] [Google Scholar]
  9. Franssen H. J., Nap J. P., Gloudemans T., Stiekema W., Van Dam H., Govers F., Louwerse J., Van Kammen A., Bisseling T. Characterization of cDNA for nodulin-75 of soybean: A gene product involved in early stages of root nodule development. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4495–4499. doi: 10.1073/pnas.84.13.4495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang B. F., Rodaway S. J., Wood A., Marcus A. RNA synthesis in germinating embryonic axes of soybean and wheat. Plant Physiol. 1980 Jun;65(6):1155–1159. doi: 10.1104/pp.65.6.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joshi C. P. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res. 1987 Dec 10;15(23):9627–9640. doi: 10.1093/nar/15.23.9627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamport D. T. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry. 1969 Mar;8(3):1155–1163. doi: 10.1021/bi00831a049. [DOI] [PubMed] [Google Scholar]
  13. Miller E. J., Gay S. Collagen: an overview. Methods Enzymol. 1982;82(Pt A):3–32. doi: 10.1016/0076-6879(82)82058-2. [DOI] [PubMed] [Google Scholar]
  14. Mort A. J., Lamport D. T. Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal Biochem. 1977 Oct;82(2):289–309. doi: 10.1016/0003-2697(77)90165-8. [DOI] [PubMed] [Google Scholar]
  15. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  16. Ramagopal S., Marcus A. RNA synthesis in growing and stationary cells of a culture of Scarlet Rose. Disproportionate synthesis of ribosomal subunits in the stationary state. J Cell Physiol. 1979 Mar;98(3):603–611. doi: 10.1002/jcp.1040980318. [DOI] [PubMed] [Google Scholar]
  17. Rosbash M. Polyadenylic acid-containing RNA in Xenopus laevis oocytes. J Mol Biol. 1974 May 5;85(1):87–101. doi: 10.1016/0022-2836(74)90131-4. [DOI] [PubMed] [Google Scholar]
  18. Stuart D. A., Varner J. E. Purification and Characterization of a Salt-extractable Hydroxyproline-rich Glycoprotein from Aerated Carrot Discs. Plant Physiol. 1980 Nov;66(5):787–792. doi: 10.1104/pp.66.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waite J. H., Housley T. J., Tanzer M. L. Peptide repeats in a mussel glue protein: theme and variations. Biochemistry. 1985 Sep 10;24(19):5010–5014. doi: 10.1021/bi00340a008. [DOI] [PubMed] [Google Scholar]
  20. Wickens M., Stephenson P. Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science. 1984 Nov 30;226(4678):1045–1051. doi: 10.1126/science.6208611. [DOI] [PubMed] [Google Scholar]
  21. Zweidler A. Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 1978;17:223–233. [PubMed] [Google Scholar]
  22. van Holst G. J., Varner J. E. Reinforced Polyproline II Conformation in a Hydroxyproline-Rich Cell Wall Glycoprotein from Carrot Root. Plant Physiol. 1984 Feb;74(2):247–251. doi: 10.1104/pp.74.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES