Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Oct;1(10):977–984. doi: 10.1105/tpc.1.10.977

An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts.

H Fromm 1, F Katagiri 1, N H Chua 1
PMCID: PMC159834  PMID: 2562557

Abstract

We have investigated the expression pattern conferred by a cis-regulatory element (-212 to -154) from the upstream region of the octopine synthase (ocs) gene in transgenic tobacco plants. Analysis of beta-glucuronidase expression driven by the ocs regulatory element revealed a pattern that is tissue-specific and developmentally regulated. In young seedlings, expression is confined primarily to root tips. In older seedlings, expression is stronger and becomes apparent also in the shoot apex. Insertion of a 16-base pair palindromic sequence (-193 to -178), which is included in the regulatory element, into an rbcS promoter results in the expression of rbcS in roots. The 16-base pair palindrome binds activation sequence factor (ASF)-1, a factor from tobacco nuclear extracts that interacts with the sequence between -83 to -63, designated as activation sequence (as)-1, of the cauliflower mosaic virus 35S promoter [Lam et al. (1989). Proc. Natl. Acad. Sci. USA 86, in press]. The in vivo expression patterns and in vitro binding properties of the ocs palindromic sequence are remarkably similar to those of the as-1 element of the cauliflower mosaic virus 35S promoter. These results suggest the involvement of ASF-1 in the transcriptional regulation of the ocs promoter and the 35S promoter.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Chua N. H. Regulated genes in transgenic plants. Science. 1989 Apr 14;244(4901):174–181. doi: 10.1126/science.244.4901.174. [DOI] [PubMed] [Google Scholar]
  2. Fluhr Robert, Moses Phyllis, Morelli Giorgio, Coruzzi Gloria, Chua Nam-Hai. Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 1986 Sep;5(9):2063–2071. doi: 10.1002/j.1460-2075.1986.tb04467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Katagiri F., Lam E., Chua N. H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature. 1989 Aug 31;340(6236):727–730. doi: 10.1038/340727a0. [DOI] [PubMed] [Google Scholar]
  4. Koncz C., De Greve H., André D., Deboeck F., Van Montagu M., Schell J. The opine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. EMBO J. 1983;2(9):1597–1603. doi: 10.1002/j.1460-2075.1983.tb01630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuhlemeier C., Cuozzo M., Green P. J., Goyvaerts E., Ward K., Chua N. H. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4662–4666. doi: 10.1073/pnas.85.13.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mikami K., Tabata T., Kawata T., Nakayama T., Iwabuchi M. Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Lett. 1987 Nov 2;223(2):273–278. doi: 10.1016/0014-5793(87)80303-4. [DOI] [PubMed] [Google Scholar]
  7. Singh K., Tokuhisa J. G., Dennis E. S., Peacock W. J. Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotypes with binding of a nuclear protein factor. Proc Natl Acad Sci U S A. 1989 May;86(10):3733–3737. doi: 10.1073/pnas.86.10.3733. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES