Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1989 Nov;1(11):1079–1093. doi: 10.1105/tpc.1.11.1079

Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants.

K D Jofuku 1, R B Goldberg 1
PMCID: PMC159845  PMID: 2562561

Abstract

We investigated the structure, organization, and developmental regulation of soybean Kunitz trypsin inhibitor genes. The Kunitz trypsin inhibitor gene family contains at least 10 members, many of which are closely linked in tandem pairs. Three Kunitz trypsin inhibitor genes, designated as KTi1, KTi2, and KTi3, do not contain intervening sequences, and are expressed during embryogenesis and in the mature plant. The KTi1 and KTi2 genes have nearly identical nucleotide sequences, are expressed at different levels during embryogenesis, are represented in leaf, root, and stem mRNAs, and probably do not encode proteins with trypsin inhibitor activity. By contrast, the KTi3 gene has diverged 20% from the KTi1 and KTi2 genes, and encodes the prominent Kunitz trypsin inhibitor found in soybean seeds. The KTi3 gene has the highest expression level during embryogenesis, and is also represented in leaf mRNA. All three Kunitz trypsin inhibitor genes are regulated correctly in transformed tobacco plants. Our results suggest that Kunitz trypsin inhibitor genes contain different combinations of cis-control elements that program distinct qualitative and quantitative expression patterns during the soybean life cycle.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Barker S. J., Harada J. J., Goldberg R. B. Cellular localization of soybean storage protein mRNA in transformed tobacco seeds. Proc Natl Acad Sci U S A. 1988 Jan;85(2):458–462. doi: 10.1073/pnas.85.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fischer R. L., Goldberg R. B. Structure and flanking regions of soybean seed protein genes. Cell. 1982 Jun;29(2):651–660. doi: 10.1016/0092-8674(82)90181-7. [DOI] [PubMed] [Google Scholar]
  4. Goldberg R. B., Hoschek G., Ditta G. S., Breidenbach R. W. Developmental regulation of cloned superabundant embryo mRNAs in soybean. Dev Biol. 1981 Apr 30;83(2):218–231. doi: 10.1016/0012-1606(81)90468-1. [DOI] [PubMed] [Google Scholar]
  5. Goldberg R. B., Hoschek G., Vodkin L. O. An insertion sequence blocks the expression of a soybean lectin gene. Cell. 1983 Jun;33(2):465–475. doi: 10.1016/0092-8674(83)90428-2. [DOI] [PubMed] [Google Scholar]
  6. Harada J. J., Barker S. J., Goldberg R. B. Soybean beta-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell. 1989 Apr;1(4):415–425. doi: 10.1105/tpc.1.4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horisberger M., Tacchini-Vonlanthen M. Ultrastructural localization of Kunitz inhibitor on thin sections of Glycine max (soybean) cv. Maple Arrow by the gold method. Histochemistry. 1983;77(1):37–50. doi: 10.1007/BF00496634. [DOI] [PubMed] [Google Scholar]
  8. Jofuku K. D., Schipper R. D., Goldberg R. B. A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell. 1989 Apr;1(4):427–435. doi: 10.1105/tpc.1.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim S. H., Hara S., Hase S., Ikenaka T., Toda H., Kitamura K., Kaizuma N. Comparative study on amino acid sequences of Kunitz-type soybean trypsin inhibitors, Tia, Tib, and Tic. J Biochem. 1985 Aug;98(2):435–448. doi: 10.1093/oxfordjournals.jbchem.a135298. [DOI] [PubMed] [Google Scholar]
  10. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  11. Nielsen N. C., Dickinson C. D., Cho T. J., Thanh V. H., Scallon B. J., Fischer R. L., Sims T. L., Drews G. N., Goldberg R. B. Characterization of the glycinin gene family in soybean. Plant Cell. 1989 Mar;1(3):313–328. doi: 10.1105/tpc.1.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okamuro J. K., Jofuku K. D., Goldberg R. B. Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8240–8244. doi: 10.1073/pnas.83.21.8240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ozawa K., Laskowski M., Jr The reactive site of trypsin inhibitors. J Biol Chem. 1966 Sep 10;241(17):3955–3961. [PubMed] [Google Scholar]
  14. Paoni N. F., Koshland D. E., Jr Permeabilization of cells for studies on the biochemistry of bacterial chemotaxis. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3693–3697. doi: 10.1073/pnas.76.8.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perez-Grau L., Goldberg R. B. Soybean Seed Protein Genes Are Regulated Spatially during Embryogenesis. Plant Cell. 1989 Nov;1(11):1095–1109. doi: 10.1105/tpc.1.11.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sweet R. M., Wright H. T., Janin J., Chothia C. H., Blow D. M. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-A resolution. Biochemistry. 1974 Sep 24;13(20):4212–4228. doi: 10.1021/bi00717a024. [DOI] [PubMed] [Google Scholar]
  17. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  18. Vodkin L. O. Isolation and Characterization of Messenger RNAs for Seed Lectin and Kunitz Trypsin Inhibitor in Soybeans. Plant Physiol. 1981 Sep;68(3):766–771. doi: 10.1104/pp.68.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vodkin L. O., Raikhel N. V. Soybean lectin and related proteins in seeds and roots of le and le soybean varieties. Plant Physiol. 1986 Jun;81(2):558–565. doi: 10.1104/pp.81.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vorndam A. V., Kerschner J. Purification of small oligonucleotides by polyacrylamide gel electrophoresis and transfer to diethylaminoethyl paper. Anal Biochem. 1986 Feb 1;152(2):221–225. doi: 10.1016/0003-2697(86)90401-x. [DOI] [PubMed] [Google Scholar]
  21. Walling L., Drews G. N., Goldberg R. B. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2123–2127. doi: 10.1073/pnas.83.7.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woods D. E., Markham A. F., Ricker A. T., Goldberger G., Colten H. R. Isolation of cDNA clones for the human complement protein factor B, a class III major histocompatibility complex gene product. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5661–5665. doi: 10.1073/pnas.79.18.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES