Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1990 Jan;2(1):85–94. doi: 10.1105/tpc.2.1.85

HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters.

K Jacobsen 1, N B Laursen 1, E O Jensen 1, A Marcker 1, C Poulsen 1, K A Marcker 1
PMCID: PMC159866  PMID: 2152106

Abstract

Three different nuclear factors recognizing short AT-rich DNA sequences were identified in different organs of soybean. One factor (NAT2) was found to be present in mature nodules, another factor (NAT1) was detected in roots and nodules, and a third one (LAT1) was only observed in leaves. All three factors recognized several DNA sequences in the promoter region of the soybean nodulin N23 gene. Footprinting, deletion, and point mutation analyses revealed different binding properties for all three factors and further showed that even single base pair substitutions had a dramatic effect on binding affinity. The LAT1 and NAT1 factors were released from chromatin by extraction with a low-salt buffer and were soluble in 2% trichloroacetic acid, implying a relationship to high-mobility group (HMG) proteins. DNA binding studies further indicated a functional relationship of these factors to the human HMG I protein. Purification of the LAT1 factor from leaf nuclei revealed the presence of two polypeptides with molecular masses of 21 kilodaltons and 23 kilodaltons, respectively, binding the same DNA sequence with equal affinity.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Elton T. S., Nissen M. S., Reeves R. Specific A . T DNA sequence binding of RP-HPLC purified HMG-I. Biochem Biophys Res Commun. 1987 Feb 27;143(1):260–265. doi: 10.1016/0006-291x(87)90659-0. [DOI] [PubMed] [Google Scholar]
  2. Goodwin G. H., Cockerill P. N., Kellam S., Wright C. A. Fractionation by high-performance liquid chromatography of the low-molecular-mass high-mobility-group (HMG) chromosomal proteins present in proliferating rat cells and an investigation of the HMG proteins present in virus transformed cells. Eur J Biochem. 1985 May 15;149(1):47–51. doi: 10.1111/j.1432-1033.1985.tb08891.x. [DOI] [PubMed] [Google Scholar]
  3. Goodwin G. H., Sanders C., Johns E. W. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973 Sep 21;38(1):14–19. doi: 10.1111/j.1432-1033.1973.tb03026.x. [DOI] [PubMed] [Google Scholar]
  4. Jensen E. Ø, Marcker K. A., Schell J., Bruijn F. J. Interaction of a nodule specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin Ibc(3) 5' upstream region. EMBO J. 1988 May;7(5):1265–1271. doi: 10.1002/j.1460-2075.1988.tb02940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jofuku K. D., Okamuro J. K., Goldberg R. B. Interaction of an embryo DNA binding protein with a soybean lectin gene upstream region. Nature. 1987 Aug 20;328(6132):734–737. doi: 10.1038/328734a0. [DOI] [PubMed] [Google Scholar]
  6. Jørgensen J. E., Stougaard J., Marcker A., Marcker K. A. Root nodule specific gene regulation: analysis of the soybean nodulin N23 gene promoter in heterologous symbiotic systems. Nucleic Acids Res. 1988 Jan 11;16(1):39–50. doi: 10.1093/nar/16.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lelong J. C., Prevost G., Lee K., Crepin M. South western blot mapping: a procedure for simultaneous characterization of DNA binding proteins and their specific genomic DNA target sites. Anal Biochem. 1989 Jun;179(2):299–303. doi: 10.1016/0003-2697(89)90132-2. [DOI] [PubMed] [Google Scholar]
  8. Lund T., Dahl K. H., Mørk E., Holtlund J., Laland S. G. The human chromosomal protein HMG I contains two identical palindrome amino acid sequences. Biochem Biophys Res Commun. 1987 Jul 31;146(2):725–730. doi: 10.1016/0006-291x(87)90589-4. [DOI] [PubMed] [Google Scholar]
  9. Lund T., Holtlund J., Fredriksen M., Laland S. G. On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett. 1983 Feb 21;152(2):163–167. doi: 10.1016/0014-5793(83)80370-6. [DOI] [PubMed] [Google Scholar]
  10. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  11. Ofverstedt L. G., Hammarström K., Balgobin N., Hjertén S., Pettersson U., Chattopadhyaya J. Rapid and quantitative recovery of DNA fragments from gels by displacement electrophoresis (isotachophoresis). Biochim Biophys Acta. 1984 Jun 16;782(2):120–126. doi: 10.1016/0167-4781(84)90014-9. [DOI] [PubMed] [Google Scholar]
  12. Russnak R. H., Candido E. P., Astell C. R. Interaction of the mouse chromosomal protein HMG-I with the 3' ends of genes in vitro. J Biol Chem. 1988 May 5;263(13):6392–6399. [PubMed] [Google Scholar]
  13. Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986 Dec 26;47(6):921–928. doi: 10.1016/0092-8674(86)90807-x. [DOI] [PubMed] [Google Scholar]
  14. Spiker S. High-mobility group chromosomal proteins of wheat. J Biol Chem. 1984 Oct 10;259(19):12007–12013. [PubMed] [Google Scholar]
  15. Stougaard J., Sandal N. N., Grøn A., Kühle A., Marcker K. A. 5' Analysis of the soybean leghaemoglobin lbc(3) gene: regulatory elements required for promoter activity and organ specificity. EMBO J. 1987 Dec 1;6(12):3565–3569. doi: 10.1002/j.1460-2075.1987.tb02686.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES