Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1990 Mar;2(3):255–261. doi: 10.1105/tpc.2.3.255

Expression analysis of a pseudogene in transgenic tobacco: a frameshift mutation prevents mRNA accumulation.

T A Voelker 1, J Moreno 1, M J Chrispeels 1
PMCID: PMC159882  PMID: 2152115

Abstract

Seeds of the Pinto cultivar of the common bean, Phaseolus vulgaris, are deficient in phytohemagglutinin (PHA), a lectin normally composed of two different polypeptides (PHA-E and PHA-L). In Pinto seeds, there is no PHA-E and only small amounts of PHA-L. The gene coding for the Pinto PHA-E, Pdlec1, is a pseudogene as a result of a single base pair deletion in codon 11, causing a frameshift and premature termination of translation. This mutation explains the absence of the PHA-E polypeptide but not the several-hundredfold reduction of the cytoplasmic Pdlec1 mRNA in developing seeds when compared with a normal PHA-E gene. To find the cause for this reduction in mRNA levels, we swapped gene fragments of Pdlec1 with the homologous parts of a normal PHA gene from the cultivar Greensleeves and introduced these fusions into tobacco. Analysis of the transgenic seeds showed that the Pdlec1 promoter is fully functional. We also repaired the Pdlec1 coding frame in vitro and inserted the repaired and unrepaired versions into a PHA gene expression cassette. In transgenic tobacco, both constructs showed Pdlec1 transcript accumulation in the second half of seed maturation. The single-base frame repair boosted the peak transcript levels by a factor of 40 and resulted in the synthesis of PHA-E at normal levels. We propose that the premature translational stop caused by the frameshift leads to a faster breakdown of the Pdlec1 mRNA, thereby preventing this transcript from accumulating to high levels.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Baumann B., Potash M. J., Köhler G. Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J. 1985 Feb;4(2):351–359. doi: 10.1002/j.1460-2075.1985.tb03636.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chappell J., Chrispeels M. J. Transcriptional and Posttranscriptional Control of Phaseolin and Phytohemagglutinin Gene Expression in Developing Cotyledons of Phaseolus vulgaris. Plant Physiol. 1986 May;81(1):50–54. doi: 10.1104/pp.81.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daar I. O., Maquat L. E. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Mol Cell Biol. 1988 Feb;8(2):802–813. doi: 10.1128/mcb.8.2.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill A. V., Nicholls R. D., Thein S. L., Higgs D. R. Recombination within the human embryonic xi-globin locus: a common xi-xi chromosome produced by gene conversion of the psi xi gene. Cell. 1985 Oct;42(3):809–819. doi: 10.1016/0092-8674(85)90277-6. [DOI] [PubMed] [Google Scholar]
  7. Hoffman L. M., Donaldson D. D. Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome. EMBO J. 1985 Apr;4(4):883–889. doi: 10.1002/j.1460-2075.1985.tb03714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jofuku K. D., Schipper R. D., Goldberg R. B. A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell. 1989 Apr;1(4):427–435. doi: 10.1105/tpc.1.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Loomis W. F., Gilpin M. E. Multigene families and vestigial sequences. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2143–2147. doi: 10.1073/pnas.83.7.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Losson R., Lacroute F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5134–5137. doi: 10.1073/pnas.76.10.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morse D. E., Yanofsky C. Polarity and the degradation of mRNA. Nature. 1969 Oct 25;224(5217):329–331. doi: 10.1038/224329a0. [DOI] [PubMed] [Google Scholar]
  13. Proudfoot N. J., Gil A., Maniatis T. The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell. 1982 Dec;31(3 Pt 2):553–563. doi: 10.1016/0092-8674(82)90311-7. [DOI] [PubMed] [Google Scholar]
  14. Schneider E., Blundell M., Kennell D. Translation and mRNA decay. Mol Gen Genet. 1978 Apr 6;160(2):121–129. doi: 10.1007/BF00267473. [DOI] [PubMed] [Google Scholar]
  15. Staswick P., Chrispeels M. J. Expression of lectin genes during seed development in normal and phytohemagglutinin-deficient cultivars of Phaseolus vulgaris. J Mol Appl Genet. 1984;2(6):525–535. [PubMed] [Google Scholar]
  16. Voelker T. A., Herman E. M., Chrispeels M. J. In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell. 1989 Jan;1(1):95–104. doi: 10.1105/tpc.1.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Voelker T. A., Staswick P., Chrispeels M. J. Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J. 1986 Dec 1;5(12):3075–3082. doi: 10.1002/j.1460-2075.1986.tb04613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Voelker T., Sturm A., Chrispeels M. J. Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J. 1987 Dec 1;6(12):3571–3577. doi: 10.1002/j.1460-2075.1987.tb02687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walling L., Drews G. N., Goldberg R. B. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2123–2127. doi: 10.1073/pnas.83.7.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES