Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1990 Apr;2(4):323–333. doi: 10.1105/tpc.2.4.323

Alternative promoters are used for genes within maize chloroplast polycistronic transcription units.

J Haley 1, L Bogorad 1
PMCID: PMC159889  PMID: 2152119

Abstract

Many chloroplast genes are co-transcribed in polycistronic transcription units that give rise to numerous overlapping RNAs, but the significance of this pattern of transcript accumulation is not understood. An analysis of the transcripts of the adjacent and divergent maize psbE-psbF-psbL-ORF40 and ORF31-petE-ORF42 gene clusters indicates that transcription initiation at alternative promoters contributes to the generation of overlapping RNAs for both clusters. Furthermore, developmentally varying transcript ratios for the ORF31-petE-ORF42 gene cluster are determined at least in part by selective promoter usage. During light-induced plastid maturation, increased levels of primarily monocistronic petE transcripts accumulate from a promoter upstream of the internal petE gene. Dark-predominant and non-light-responsive bi- and tricistronic transcripts result from transcription initiation upstream of ORF31, the proximal gene of the cluster. In addition to the transcriptional overlap within gene clusters, divergent transcription units for the two gene clusters overlap and reciprocal antisense RNAs accumulate. The organization of the transcription units in this region raises the possibility of promoter interdependence or other functional interaction between transcription units.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Gottesman M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell. 1982 Jul;29(3):939–944. doi: 10.1016/0092-8674(82)90456-1. [DOI] [PubMed] [Google Scholar]
  2. Biswas T. K., Getz G. S. Promoter-promoter interactions influencing transcription of the yeast mitochondrial gene, Oli 1, coding for ATPase subunit 9. Cis and trans effects. J Biol Chem. 1988 Apr 5;263(10):4844–4851. [PubMed] [Google Scholar]
  3. Brawerman G. mRNA decay: finding the right targets. Cell. 1989 Apr 7;57(1):9–10. doi: 10.1016/0092-8674(89)90166-9. [DOI] [PubMed] [Google Scholar]
  4. Carrillo N., Seyer P., Tyagi A., Herrmann R. G. Cytochrome b-559 genes from Oenothera hookeri and Nicotiana tabacum show a remarkably high degree of conservation as compared to spinach. The enigma of cytochrome b-559: highly conserved genes and proteins but no known function. Curr Genet. 1986;10(8):619–624. doi: 10.1007/BF00418129. [DOI] [PubMed] [Google Scholar]
  5. Graham D. E., Xu Y. H., Ishii S., Merlino G. T. 'Northern Cross' hybridization for rapid identification of exon-containing restriction fragments. Gene. 1986;48(2-3):241–249. doi: 10.1016/0378-1119(86)90082-x. [DOI] [PubMed] [Google Scholar]
  6. Gruissem W., Barkan A., Deng X. W., Stern D. Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet. 1988 Sep;4(9):258–263. doi: 10.1016/0168-9525(88)90033-9. [DOI] [PubMed] [Google Scholar]
  7. Gruissem W. Chloroplast gene expression: how plants turn their plastids on. Cell. 1989 Jan 27;56(2):161–170. doi: 10.1016/0092-8674(89)90889-1. [DOI] [PubMed] [Google Scholar]
  8. Haley J., Bogorad L. A 4-kDa maize chloroplast polypeptide associated with the cytochrome b6-f complex: subunit 5, encoded by the chloroplast petE gene. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1534–1538. doi: 10.1073/pnas.86.5.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudson G. S., Mason J. G., Holton T. A., Koller B., Cox G. B., Whitfeld P. R., Bottomley W. A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol. 1987 Jul 20;196(2):283–298. doi: 10.1016/0022-2836(87)90690-5. [DOI] [PubMed] [Google Scholar]
  10. Ikeuchi M., Takio K., Inoue Y. N-terminal sequencing of photosystem II low-molecular-mass proteins. 5 and 4.1 kDa components of the O2-evolving core complex from higher plants. FEBS Lett. 1989 Jan 2;242(2):263–269. doi: 10.1016/0014-5793(89)80482-x. [DOI] [PubMed] [Google Scholar]
  11. Lukens J. H., Bogorad L. Nucleotide sequence containing the maize chloroplast proline (UGG) and tryptophan (CCA) tRNA genes. Nucleic Acids Res. 1988 Jun 10;16(11):5192–5192. doi: 10.1093/nar/16.11.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Proudfoot N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature. 1986 Aug 7;322(6079):562–565. doi: 10.1038/322562a0. [DOI] [PubMed] [Google Scholar]
  13. Rochaix J. D., Erickson J. Function and assembly of photosystem II: genetic and molecular analysis. Trends Biochem Sci. 1988 Feb;13(2):56–59. doi: 10.1016/0968-0004(88)90029-1. [DOI] [PubMed] [Google Scholar]
  14. Rock C. D., Barkan A., Taylor W. C. The maize plastid psbB-psbF-petB-petD gene cluster: spliced and unspliced petB and petD RNAs encode alternative products. Curr Genet. 1987;12(1):69–77. doi: 10.1007/BF00420729. [DOI] [PubMed] [Google Scholar]
  15. Rodermel S. R., Bogorad L. Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. J Cell Biol. 1985 Feb;100(2):463–476. doi: 10.1083/jcb.100.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sheen J. Y., Bogorad L. Differential Expression in Bundle Sheath and Mesophyll Cells of Maize of Genes for Photosystem II Components Encoded by the Plastid Genome. Plant Physiol. 1988 Apr;86(4):1020–1026. doi: 10.1104/pp.86.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tanaka M, Obokata J, Chunwongse J, Shinozaki K, Sugiura M. Rapid splicing and stepwise processing of a transcript from the psbB operon in tobacco chloroplasts: determination of the intron sites in petB and petD. Mol Gen Genet. 1987 Oct;209(3):427–431. doi: 10.1007/BF00331145. [DOI] [PubMed] [Google Scholar]
  18. Westhoff P., Herrmann R. G. Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem. 1988 Feb 1;171(3):551–564. doi: 10.1111/j.1432-1033.1988.tb13824.x. [DOI] [PubMed] [Google Scholar]
  19. Yao W. B., Meng B. Y., Tanaka M., Sugiura M. An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucleic Acids Res. 1989 Dec 11;17(23):9583–9591. doi: 10.1093/nar/17.23.9583. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES