Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1990 Aug;2(8):769–783. doi: 10.1105/tpc.2.8.769

Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers.

S M Koehler 1, T H Ho 1
PMCID: PMC159929  PMID: 2152126

Abstract

Barley aleurone layers synthesize and secrete several proteases in response to gibberellic acid (GA3). Two major cysteine proteinases designated EP-A (37,000 M(r)) and EP-B (30,000 M(r)) have been described [Koehler and Ho (1988). Plant Physiol. 87, 95-103]. We now report the cDNA cloning of EP-B and describe the post-translational processing and hormonal regulation of both cysteine proteinases. Three cDNAs for cysteine proteinases were cloned from GA3-induced barley aleurone layers. Genomic DNA gel blot analysis indicated that these are members of a small gene family with no more than four to five different genes. The proteins encoded by two of these clones, pHVEP1 and 4, are 98% similar to each other and are isozymes of EP-B. The proteins contain large preprosequences followed by the amino acid sequence described as the mature N terminus of purified EP-B, and are antigenic to EP-B antiserum. The results of pulse-chase experiments indicated that the post-translational processing of large prosequences proceeds in a multistep fashion to produce the mature enzymes. Processing intermediates for EP-B are observed both in the aleurone layers and surrounding incubation medium, but only mature EP-A is secreted. The regulation of synthesis of EP-A, EP-B, and other aleurone cysteine proteinases was compared at the protein and mRNA levels. We conclude that barley aleurone cysteine proteinases are differentially regulated with respect to their temporal and hormonally induced expression.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasofu H., Yamauchi D., Mitsuhashi W., Minamikawa T. Nucleotide sequence of cDNA for sulfhydryl-endopeptidase (SH-EP) from cotyledons of germinating Vigna mungo seeds. Nucleic Acids Res. 1989 Aug 25;17(16):6733–6733. doi: 10.1093/nar/17.16.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker E. N. Structure of actinidin, after refinement at 1.7 A resolution. J Mol Biol. 1980 Aug 25;141(4):441–484. doi: 10.1016/0022-2836(80)90255-7. [DOI] [PubMed] [Google Scholar]
  3. Belanger F. C., Brodl M. R., Ho T. H. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1354–1358. doi: 10.1073/pnas.83.5.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bollum F. J. Antibody to terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4119–4122. doi: 10.1073/pnas.72.10.4119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carne A., Moore C. H. The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Biochem J. 1978 Jul 1;173(1):73–83. doi: 10.1042/bj1730073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan S. J., San Segundo B., McCormick M. B., Steiner D. F. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7721–7725. doi: 10.1073/pnas.83.20.7721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen L. W., Coghlan V. M., Dihel L. C. Cloning and sequencing of papain-encoding cDNA. Gene. 1986;48(2-3):219–227. doi: 10.1016/0378-1119(86)90080-6. [DOI] [PubMed] [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drenth J., Kalk K. H., Swen H. M. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976 Aug 24;15(17):3731–3738. doi: 10.1021/bi00662a014. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  12. Hammerton R. W., Ho T. H. Hormonal regulation of the development of protease and carboxypeptidase activities in barley aleurone layers. Plant Physiol. 1986 Mar;80(3):692–697. doi: 10.1104/pp.80.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  14. Hunt A. G., MacDonald M. H. Deletion analysis of the polyadenylation signal of a pea ribulose-1,5-bisphosphate carboxylase small-subunit gene. Plant Mol Biol. 1989 Aug;13(2):125–138. doi: 10.1007/BF00016132. [DOI] [PubMed] [Google Scholar]
  15. Ishidoh K., Imajoh S., Emori Y., Ohno S., Kawasaki H., Minami Y., Kominami E., Katunuma N., Suzuki K. Molecular cloning and sequencing of cDNA for rat cathepsin H. Homology in pro-peptide regions of cysteine proteinases. FEBS Lett. 1987 Dec 21;226(1):33–37. doi: 10.1016/0014-5793(87)80545-8. [DOI] [PubMed] [Google Scholar]
  16. Jacobsen J. V., Varner J. E. Gibberellic Acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol. 1967 Nov;42(11):1596–1600. doi: 10.1104/pp.42.11.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobson A. Purification and fractionation of poly(A)+ RNA. Methods Enzymol. 1987;152:254–261. doi: 10.1016/0076-6879(87)52028-6. [DOI] [PubMed] [Google Scholar]
  18. Jen G., Thach R. E. Inhibition of host translation in encephalomyocarditis virus-infected L cells: a novel mechanism. J Virol. 1982 Jul;43(1):250–261. doi: 10.1128/jvi.43.1.250-261.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kamphuis I. G., Drenth J., Baker E. N. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J Mol Biol. 1985 Mar 20;182(2):317–329. doi: 10.1016/0022-2836(85)90348-1. [DOI] [PubMed] [Google Scholar]
  21. Khursheed B., Rogers J. C. Barley alpha-amylase genes and the thiol protease gene Aleurain: use of a single poly(A) addition signal associated with a conserved pentanucleotide at the cleavage site. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3987–3991. doi: 10.1073/pnas.86.11.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koehler S., Ho T. H. Purification and characterization of gibberellic Acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 1988 May;87(1):95–103. doi: 10.1104/pp.87.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mason R. W., Gal S., Gottesman M. M. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 1987 Dec 1;248(2):449–454. doi: 10.1042/bj2480449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishimura Y., Furuno K., Kato K. Biosynthesis and processing of lysosomal cathepsin L in primary cultures of rat hepatocytes. Arch Biochem Biophys. 1988 May 15;263(1):107–116. doi: 10.1016/0003-9861(88)90618-2. [DOI] [PubMed] [Google Scholar]
  25. Nishimura Y., Kato K. Intracellular transport and processing of lysosomal cathepsin H. Biochem Biophys Res Commun. 1987 Oct 14;148(1):329–334. doi: 10.1016/0006-291x(87)91114-4. [DOI] [PubMed] [Google Scholar]
  26. Poulle M., Jones B. L. A Proteinase from Germinating Barley : I. Purification and Some Physical Properties of a 30 kD Cysteine Endoproteinase from Green Malt. Plant Physiol. 1988 Dec;88(4):1454–1460. doi: 10.1104/pp.88.4.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith S. M., Gottesman M. M. Activity and deletion analysis of recombinant human cathepsin L expressed in Escherichia coli. J Biol Chem. 1989 Dec 5;264(34):20487–20495. [PubMed] [Google Scholar]
  28. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]
  29. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES