Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1990 Oct;2(10):953–961. doi: 10.1105/tpc.2.10.953

Early Changes in Gene Expression during the Transition from Vegetative to Generative Growth in the Long-Day Plant Sinapis alba.

S Melzer 1, D M Majewski 1, K Apel 1
PMCID: PMC159944  PMID: 12354947

Abstract

Changes in gene expression during flower formation were studied in the long-day plant Sinapis alba. The day length dependence was exploited to synchronize flower formation in a large population of mustard plants. After an inductive light treatment, apices were harvested after different lengths of time, and changes in gene expression were analyzed. Two major groups of genes were identified whose expression was affected during flower formation. Transcripts of the first group (group I) were present at low concentration in the apex of noninduced plants. They began to accumulate strongly after the end of the inductive light period. They reached a maximum 2 days to 10 days after flower induction and then declined slowly. Transcripts of the second group of genes (group II) could be detected for the first time 10 days after flower induction. Within a very short time, these transcripts accumulated dramatically and reached a maximum 15 days after flower induction before beginning to decline. They dropped beyond the limit of detection before the flower reached maturity.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angerer L. M., Cox K. H., Angerer R. C. Demonstration of tissue-specific gene expression by in situ hybridization. Methods Enzymol. 1987;152:649–661. doi: 10.1016/0076-6879(87)52071-7. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batschauer A., Apel K. An inverse control by phytochrome of the expression of two nuclear genes in barley (Hordeum vulgare L.). Eur J Biochem. 1984 Sep 17;143(3):593–597. doi: 10.1111/j.1432-1033.1984.tb08411.x. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Davis M. M., Cohen D. I., Nielsen E. A., Steinmetz M., Paul W. E., Hood L. Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2194–2198. doi: 10.1073/pnas.81.7.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng G., Wu R. An improved procedure for utilizing terminal transferase to add homopolymers to the 3' termini of DNA. Nucleic Acids Res. 1981 Aug 25;9(16):4173–4188. doi: 10.1093/nar/9.16.4173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drews G. N., Goldberg R. B. Genetic control of flower development. Trends Genet. 1989 Aug;5(8):256–261. doi: 10.1016/0168-9525(89)90098-x. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Gasser C. S., Budelier K. A., Smith A. G., Shah D. M., Fraley R. T. Isolation of Tissue-Specific cDNAs from Tomato Pistils. Plant Cell. 1989 Jan;1(1):15–24. doi: 10.1105/tpc.1.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldberg R. B. Plants: novel developmental processes. Science. 1988 Jun 10;240(4858):1460–1467. doi: 10.1126/science.3287622. [DOI] [PubMed] [Google Scholar]
  11. Land H., Grez M., Hauser H., Lindenmaier W., Schütz G. 5'-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency. Nucleic Acids Res. 1981 May 25;9(10):2251–2266. doi: 10.1093/nar/9.10.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meeks-Wagner D. R., Dennis E. S., Tran Thanh Van K., Peacock W. J. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell. 1989 Jan;1(1):25–35. doi: 10.1105/tpc.1.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  14. Sommer H., Beltrán J. P., Huijser P., Pape H., Lönnig W. E., Saedler H., Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990 Mar;9(3):605–613. doi: 10.1002/j.1460-2075.1990.tb08152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Timberlake W. E. Developmental gene regulation in Aspergillus nidulans. Dev Biol. 1980 Aug;78(2):497–510. doi: 10.1016/0012-1606(80)90349-8. [DOI] [PubMed] [Google Scholar]
  16. Van Ness J., Hahn W. E. Physical parameters affecting the rate and completion of RNA driven hybridization of DNA: new measurements relevant to quantitation based on kinetics. Nucleic Acids Res. 1982 Dec 20;10(24):8061–8077. doi: 10.1093/nar/10.24.8061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]
  18. Zimmermann C. R., Orr W. C., Leclerc R. F., Barnard E. C., Timberlake W. E. Molecular cloning and selection of genes regulated in Aspergillus development. Cell. 1980 Oct;21(3):709–715. doi: 10.1016/0092-8674(80)90434-1. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES