Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1990 Oct;2(10):963–972. doi: 10.1105/tpc.2.10.963

Identification of genes expressed in the tobacco shoot apex during the floral transition.

A J Kelly 1, M T Zagotta 1, R A White 1, C Chang 1, D R Meeks-Wagner 1
PMCID: PMC159945  PMID: 2136627

Abstract

The shoot apex of higher plants contains undifferentiated meristematic cells that serve as the origin of post-embryonic organs. The transition from vegetative to reproductive growth results in the commitment of the apical meristem to floral organ formation. To identify the molecular signals that initiate floral development, we have pursued the isolation of genes that are transcriptionally active in the shoot apex of tobacco during the transition from vegetative to floral growth. The small size of the apex led us to utilize polymerase chain reaction shoot apices. This approach enabled the isolation of the apex-specific and floral apex-specific cDNA clones described in this paper. One clone, A3, detected an equivalent level of transcript in the shoot apex during all developmental stages observed. The second clone, FA2, detected a unique transcript that increased in abundance in the shoot apex during the transition to flowering and showed high levels of expression in developing petals, stamens, and pistils.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belyavsky A., Vinogradova T., Rajewsky K. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells. Nucleic Acids Res. 1989 Apr 25;17(8):2919–2932. doi: 10.1093/nar/17.8.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boutry M., Chua N. H. A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 1985 Sep;4(9):2159–2165. doi: 10.1002/j.1460-2075.1985.tb03910.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drews G. N., Goldberg R. B. Genetic control of flower development. Trends Genet. 1989 Aug;5(8):256–261. doi: 10.1016/0168-9525(89)90098-x. [DOI] [PubMed] [Google Scholar]
  5. Duguid J. R., Rohwer R. G., Seed B. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5738–5742. doi: 10.1073/pnas.85.15.5738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg R. B. Plants: novel developmental processes. Science. 1988 Jun 10;240(4858):1460–1467. doi: 10.1126/science.3287622. [DOI] [PubMed] [Google Scholar]
  8. Kunst L., Klenz J. E., Martinez-Zapater J., Haughn G. W. AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell. 1989 Dec;1(12):1195–1208. doi: 10.1105/tpc.1.12.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lang A., Chailakhyan M. K., Frolova I. A. Promotion and inhibition of flower formation in a dayneutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2412–2416. doi: 10.1073/pnas.74.6.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Larkin J. C., Felsheim R., Das A. Floral determination in the terminal bud of the short-day plant Pharbitis nil. Dev Biol. 1990 Feb;137(2):434–443. doi: 10.1016/0012-1606(90)90268-n. [DOI] [PubMed] [Google Scholar]
  11. Meeks-Wagner D. R., Dennis E. S., Tran Thanh Van K., Peacock W. J. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell. 1989 Jan;1(1):25–35. doi: 10.1105/tpc.1.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mohnen D., Shinshi H., Felix G., Meins F. Hormonal regulation of beta1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J. 1985 Jul;4(7):1631–1635. doi: 10.1002/j.1460-2075.1985.tb03830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  14. Sommer H., Beltrán J. P., Huijser P., Pape H., Lönnig W. E., Saedler H., Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990 Mar;9(3):605–613. doi: 10.1002/j.1460-2075.1990.tb08152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Timblin C., Battey J., Kuehl W. M. Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. Nucleic Acids Res. 1990 Mar 25;18(6):1587–1593. doi: 10.1093/nar/18.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES