Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1990 Dec;2(12):1239–1248. doi: 10.1105/tpc.2.12.1239

Analysis of tomato polygalacturonase expression in transgenic tobacco.

K W Osteryoung 1, K Toenjes 1, B Hall 1, V Winkler 1, A B Bennett 1
PMCID: PMC159969  PMID: 2152163

Abstract

Tomato polygalacturonase is a cell wall enzyme secreted in large amounts during tomato fruit ripening. Polygalacturonase is synthesized as a glycoprotein precursor that undergoes numerous cotranslational and post-translational processing steps during its maturation, yielding three isozymes in tomato fruit, PG1, PG2A, and PG2B. To investigate the physiological roles of the three isozymes and the functional significance of the polygalacturonase processing domains in its intracellular transport and activity, we have examined polygalacturonase expression in transgenic tobacco plants. A full-length polygalacturonase cDNA was placed under control of the cauliflower mosaic virus 35S promoter and introduced into tobacco by way of Agrobacterium-mediated transformation. Analysis of transgenic tobacco plants indicated that (1) immunologically detectable polygalacturonase can be extracted from leaves, roots, and stems of transgenic tobacco plants; (2) only PG2A and PG2B were detectable in transgenic tobacco; (3) the polygalacturonase isozymes present in transgenic tobacco were electrophoretically indistinguishable from the tomato isozymes; (4) the N-terminal sequence, degree of N-linked glycosylation, and extent of oligosaccharide processing were similar in polygalacturonase from transgenic tobacco and tomato; (5) polygalacturonase was properly localized in cell walls of transgenic tissue; (6) the protein was enzymatically active in vitro; however, (7) accumulation of PG2A and PG2B in cell walls of transgenic tobacco did not result in pectin degradation in vivo. These results indicated that tomato polygalacturonase was properly processed and transported to the cell wall of tobacco. However, accumulation of the two polygalacturonase isozymes expressed in this heterologous host was insufficient to promote polyuronide degradation in tobacco leaf tissue.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altabella T., Chrispeels M. J. Tobacco Plants Transformed with the Bean alphaai Gene Express an Inhibitor of Insect alpha-Amylase in Their Seeds. Plant Physiol. 1990 Jun;93(2):805–810. doi: 10.1104/pp.93.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Crookes P. R., Grierson D. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol. 1983 Aug;72(4):1088–1093. doi: 10.1104/pp.72.4.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dellapenna D., Alexander D. C., Bennett A. B. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6420–6424. doi: 10.1073/pnas.83.17.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dellapenna D., Kates D. S., Bennett A. B. Polygalacturonase Gene Expression in Rutgers, rin, nor, and Nr Tomato Fruits. Plant Physiol. 1987 Oct;85(2):502–507. doi: 10.1104/pp.85.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dellapenna D., Lashbrook C. C., Toenjes K., Giovannoni J. J., Fischer R. L., Bennett A. B. Polygalacturonase Isozymes and Pectin Depolymerization in Transgenic rin Tomato Fruit. Plant Physiol. 1990 Dec;94(4):1882–1886. doi: 10.1104/pp.94.4.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giovannoni J. J., DellaPenna D., Bennett A. B., Fischer R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989 Jan;1(1):53–63. doi: 10.1105/tpc.1.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karp D. R., Atkinson J. P., Shreffler D. C. Genetic variation in glycosylation of the fourth component of murine complement. Association with hemolytic activity. J Biol Chem. 1982 Jul 10;257(13):7330–7335. [PubMed] [Google Scholar]
  10. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  11. Lisker N., Retig N. Detection of polygalacturonase and pectin lyase isoenzymes in polyacrylamide gels. J Chromatogr. 1974 Sep 11;96(2):245–249. doi: 10.1016/s0021-9673(00)98570-4. [DOI] [PubMed] [Google Scholar]
  12. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  13. Moshrefi M., Luh B. S. Carbohydrate composition and electrophoretic properties of tomato polygalacturonase isoenzymes. Eur J Biochem. 1983 Oct 3;135(3):511–514. doi: 10.1111/j.1432-1033.1983.tb07681.x. [DOI] [PubMed] [Google Scholar]
  14. Otten L. A., Schilperoort R. A. A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim Biophys Acta. 1978 Dec 8;527(2):497–500. doi: 10.1016/0005-2744(78)90363-7. [DOI] [PubMed] [Google Scholar]
  15. Post-Beittenmiller M. A., Schmid K. M., Ohlrogge J. B. Expression of holo and apo forms of spinach acyl carrier protein-I in leaves of transgenic tobacco plants. Plant Cell. 1989 Sep;1(9):889–899. doi: 10.1105/tpc.1.9.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pressey R., Avants J. K. Two forms of polygalacturonase in tomatoes. Biochim Biophys Acta. 1973 Jun 6;309(2):363–369. doi: 10.1016/0005-2744(73)90035-1. [DOI] [PubMed] [Google Scholar]
  17. Pressey R. Purification and characterization of tomato polygalacturonase converter. Eur J Biochem. 1984 Oct 15;144(2):217–221. doi: 10.1111/j.1432-1033.1984.tb08452.x. [DOI] [PubMed] [Google Scholar]
  18. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  19. Shah D. M., Horsch R. B., Klee H. J., Kishore G. M., Winter J. A., Tumer N. E., Hironaka C. M., Sanders P. R., Gasser C. S., Aykent S., Siegel N. R., Rogers S. G., Fraley R. T. Engineering herbicide tolerance in transgenic plants. Science. 1986 Jul 25;233(4762):478–481. doi: 10.1126/science.233.4762.478. [DOI] [PubMed] [Google Scholar]
  20. Smith C. J., Watson C. F., Morris P. C., Bird C. R., Seymour G. B., Gray J. E., Arnold C., Tucker G. A., Schuch W., Harding S. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol. 1990 Mar;14(3):369–379. doi: 10.1007/BF00028773. [DOI] [PubMed] [Google Scholar]
  21. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  22. Tarentino A. L., Plummer T. H., Jr Oligosaccharide accessibility to peptide:N-glycosidase as promoted by protein-unfolding reagents. J Biol Chem. 1982 Sep 25;257(18):10776–10780. [PubMed] [Google Scholar]
  23. Themmen A. P., Tucker G. A., Grierson D. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 1982 Jan;69(1):122–124. doi: 10.1104/pp.69.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tucker G. A., Robertson N. G., Grierson D. The conversion of tomato-fruit polygalacturonase isoenzyme 2 into isoenzyme 1 in vitro. Eur J Biochem. 1981 Mar 16;115(1):87–90. doi: 10.1111/j.1432-1033.1981.tb06201.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES