Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Jan;3(1):73–85. doi: 10.1105/tpc.3.1.73

The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco.

P Masson 1, M Strem 1, N Fedoroff 1
PMCID: PMC159980  PMID: 1668614

Abstract

The maize Suppressor-mutator (Spm) element encodes four alternatively spliced transcripts designated tnpA, tnpB, tnpC, and tnpD. tnpA and tnpB are monocistronic, whereas tnpC and tnpD are dicistronic, and the protein-coding sequences of each transcript overlap extensively with those of one or more of the other transcripts. We have analyzed the role of the Spm-encoded gene products in element transposition by using cDNAs with a single open reading frame to (1) complement Spm elements with frameshift mutations and (2) complement each other in a tobacco transposition assay. We report that whereas the tnpA and tnpD gene products are essential for transposition, the tnpB and tnpC gene products are not. We have analyzed the structure of empty donor sites, new insertion sites, and potential transposition intermediates. We discuss the implications of our findings for the mechanism of Spm transposition.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coen E. S., Carpenter R., Martin C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell. 1986 Oct 24;47(2):285–296. doi: 10.1016/0092-8674(86)90451-4. [DOI] [PubMed] [Google Scholar]
  2. Cuypers H., Dash S., Peterson P. A., Saedler H., Gierl A. The defective En-I102 element encodes a product reducing the mutability of the En/Spm transposable element system of Zea mays. EMBO J. 1988 Oct;7(10):2953–2960. doi: 10.1002/j.1460-2075.1988.tb03157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Friedman A. D., Triezenberg S. J., McKnight S. L. Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature. 1988 Sep 29;335(6189):452–454. doi: 10.1038/335452a0. [DOI] [PubMed] [Google Scholar]
  4. Gierl A., Lütticke S., Saedler H. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 1988 Dec 20;7(13):4045–4053. doi: 10.1002/j.1460-2075.1988.tb03298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grant S. R., Gierl A., Saedler H. En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO J. 1990 Jul;9(7):2029–2035. doi: 10.1002/j.1460-2075.1990.tb07369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Masson P., Fedoroff N. V. Mobility of the maize suppressor-mutator element in transgenic tobacco cells. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2219–2223. doi: 10.1073/pnas.86.7.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Masson P., Rutherford G., Banks J. A., Fedoroff N. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell. 1989 Aug 25;58(4):755–765. doi: 10.1016/0092-8674(89)90109-8. [DOI] [PubMed] [Google Scholar]
  8. Masson P., Surosky R., Kingsbury J. A., Fedoroff N. V. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics. 1987 Sep;117(1):117–137. doi: 10.1093/genetics/117.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Misra S., Rio D. C. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell. 1990 Jul 27;62(2):269–284. doi: 10.1016/0092-8674(90)90365-l. [DOI] [PubMed] [Google Scholar]
  10. Pereira A., Cuypers H., Gierl A., Schwarz-Sommer Z., Saedler H. Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 1986 May;5(5):835–841. doi: 10.1002/j.1460-2075.1986.tb04292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ralston E. J., English J. J., Dooner H. K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics. 1988 May;119(1):185–197. doi: 10.1093/genetics/119.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rio D. C., Laski F. A., Rubin G. M. Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell. 1986 Jan 17;44(1):21–32. doi: 10.1016/0092-8674(86)90481-2. [DOI] [PubMed] [Google Scholar]
  13. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schiefelbein J. W., Raboy V., Kim H. Y., Nelson O. E. Molecular characterization of suppressor-mutator (Spm)-induced mutations at the bronze-1 locus in maize: the bz-m13 alleles. Basic Life Sci. 1988;47:261–278. doi: 10.1007/978-1-4684-5550-2_19. [DOI] [PubMed] [Google Scholar]
  15. Schwarz-Sommer Z., Shepherd N., Tacke E., Gierl A., Rohde W., Leclercq L., Mattes M., Berndtgen R., Peterson P. A., Saedler H. Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J. 1987 Feb;6(2):287–294. doi: 10.1002/j.1460-2075.1987.tb04752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES