Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Feb;3(2):159–168. doi: 10.1105/tpc.3.2.159

In vivo footprinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2.

A L Paul 1, R J Ferl 1
PMCID: PMC159988  PMID: 1840906

Abstract

The transcriptional activation of maize alcohol dehydrogenase-1 (Adh1) and alcohol dehydrogenase-2 (Adh2) is accompanied by changes in the chromatin structure within the 5'-flanking region of each gene. The positions of DNA-binding factors bound to the 5'-flanking regions were determined by in vivo dimethyl sulfate footprinting of maize suspension cultures over 8 hours of hypoxic induction. In Adh1 there are two types of DNA-binding factors associated with the promoter region. One set of factors is constitutively associated with the cis-regulatory anaerobic response element, whereas two additional factors bind only after Adh1 has been induced by hypoxic stress. Returning hypoxically stressed cells to an aerobic environment restores the dimethyl sulfate footprint observed for the uninduced Adh1 gene. In contrast, all of the factors bound to the 5'-flanking region of Adh2 are constitutively present and unchanged by hypoxia. There is one footprint site common to both Adh1 and Adh2, but it is not an anaerobic response-like element.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker P. B., Ruppert S., Schütz G. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell. 1987 Nov 6;51(3):435–443. doi: 10.1016/0092-8674(87)90639-8. [DOI] [PubMed] [Google Scholar]
  2. Benoist C., Chambon P. In vivo sequence requirements of the SV40 early promotor region. Nature. 1981 Mar 26;290(5804):304–310. doi: 10.1038/290304a0. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Ephrussi A., Gilbert W., Tonegawa S. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. 1985 Feb 28-Mar 6Nature. 313(6005):798–801. doi: 10.1038/313798a0. [DOI] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeLisle A. J., Ferl R. J. Characterization of the Arabidopsis Adh G-box binding factor. Plant Cell. 1990 Jun;2(6):547–557. doi: 10.1105/tpc.2.6.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennis E. S., Gerlach W. L., Walker J. C., Lavin M., Peacock W. J. Anaerobically regulated aldolase gene of maize. A chimaeric origin? J Mol Biol. 1988 Aug 20;202(4):759–767. doi: 10.1016/0022-2836(88)90556-6. [DOI] [PubMed] [Google Scholar]
  7. Dennis E. S., Sachs M. M., Gerlach W. L., Beach L., Peacock W. J. The Ds1 transposable element acts as an intron in the mutant allele Adh1-Fm335 and is spliced from the message. Nucleic Acids Res. 1988 May 11;16(9):3815–3828. doi: 10.1093/nar/16.9.3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferl R. J. ARF-B(2): A Protein Complex that Specifically Binds to Part of the Anaerobic Response Element of Maize Adh 1. Plant Physiol. 1990 Jul;93(3):1094–1101. doi: 10.1104/pp.93.3.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferl R. J., Nick H. S. In vivo detection of regulatory factor binding sites in the 5' flanking region of maize Adh1. J Biol Chem. 1987 Jun 15;262(17):7947–7950. [PubMed] [Google Scholar]
  10. Freeling M. Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specificed by two unlinked genes: differential Adh1-Adh2 expression in maize. Mol Gen Genet. 1973 Dec 31;127(3):215–227. doi: 10.1007/BF00333761. [DOI] [PubMed] [Google Scholar]
  11. Giuliano G., Pichersky E., Malik V. S., Timko M. P., Scolnik P. A., Cashmore A. R. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7089–7093. doi: 10.1073/pnas.85.19.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hake S., Kelley P. M., Taylor W. C., Freeling M. Coordinate induction of alcohol dehydrogenase 1, aldolase, and other anaerobic RNAs in maize. J Biol Chem. 1985 Apr 25;260(8):5050–5054. [PubMed] [Google Scholar]
  13. Lee L., Fenoll C., Bennetzen J. L. Construction and Homologous Expression of a Maize Adh1 Based NcoI Cassette Vector. Plant Physiol. 1987 Oct;85(2):327–330. doi: 10.1104/pp.85.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lobanenkov V. V., Nicolas R. H., Plumb M. A., Wright C. A., Goodwin G. H. Sequence-specific DNA-binding proteins which interact with (G + C)-rich sequences flanking the chicken c-myc gene. Eur J Biochem. 1986 Aug 15;159(1):181–188. doi: 10.1111/j.1432-1033.1986.tb09850.x. [DOI] [PubMed] [Google Scholar]
  15. Lois R., Dietrich A., Hahlbrock K., Schulz W. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J. 1989 Jun;8(6):1641–1648. doi: 10.1002/j.1460-2075.1989.tb03554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKendree W. L., Paul A. L., DeLisle A. J., Ferl R. J. In vivo and in vitro characterization of protein interactions with the dyad G-box of the Arabidopsis Adh gene. Plant Cell. 1990 Mar;2(3):207–214. doi: 10.1105/tpc.2.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nairn C. J., Ferl R. J. The complete nucleotide sequence of the small-subunit ribosomal RNA coding region for the cycad Zamia pumila: phylogenetic implications. J Mol Evol. 1988;27(2):133–141. doi: 10.1007/BF02138373. [DOI] [PubMed] [Google Scholar]
  18. Nick H., Gilbert W. Detection in vivo of protein-DNA interactions within the lac operon of Escherichia coli. 1985 Feb 28-Mar 6Nature. 313(6005):795–798. doi: 10.1038/313795a0. [DOI] [PubMed] [Google Scholar]
  19. Rowland L. J., Strommer J. N. Anaerobic treatment of maize roots affects transcription of Adh1 and transcript stability. Mol Cell Biol. 1986 Oct;6(10):3368–3372. doi: 10.1128/mcb.6.10.3368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  21. Saluz H., Jost J. P. Optimized genomic sequencing as a tool for the study of cytosine methylation in the regulatory region of the chicken vitellogenin II gene. Gene. 1986;42(2):151–157. doi: 10.1016/0378-1119(86)90291-x. [DOI] [PubMed] [Google Scholar]
  22. Schulze-Lefert P., Becker-André M., Schulz W., Hahlbrock K., Dangl J. L. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell. 1989 Jul;1(7):707–714. doi: 10.1105/tpc.1.7.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schulze-Lefert P., Dangl J. L., Becker-André M., Hahlbrock K., Schulz W. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J. 1989 Mar;8(3):651–656. doi: 10.1002/j.1460-2075.1989.tb03422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ueda T., Pichersky E., Malik V. S., Cashmore A. R. Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell. 1989 Feb;1(2):217–227. doi: 10.1105/tpc.1.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walker J. C., Howard E. A., Dennis E. S., Peacock W. J. DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6624–6628. doi: 10.1073/pnas.84.19.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES