Abstract
The psbA gene codes for the D1 polypeptide of the photosystem II reaction center complex and is found in all photosynthetic organisms that carry out oxygenic photosynthesis. Here we describe the construction and characterization of a strain of the cyanobacterium Synechocystis sp PCC 6803 in which the three endogenous psbA genes are replaced by a single psbA gene from the chloroplast genome of the higher plant Poa annua. The resulting chimeric strain, KWPAS, grows photoautotrophically with a doubling time of 26 hours compared with 20 hours for wild-type Synechocystis 6803. The mutant oxidizes water to oxygen at light-saturated rates comparable with wild type, despite differences in 15% of the primary structure of D1 between these species. RNA gel blot analysis indicates the presence in KWPAS of a psbA transcript of approximately 1.25 kilobases, consistent with the chloroplast promoter also acting as a promoter in Synechocystis. By using antibodies specific for the carboxyl-terminal extension of the D1 polypeptide of higher plants, we showed that the D1 polypeptide synthesized by KWPAS is post-translationally modified at the carboxyl terminus, probably through processing. A detailed biophysical analysis of the chimeric photosystem II complex indicated that the rates of forward electron transfer are similar to wild type. The rates of charge recombination between the donor and acceptor sides of the reaction center are, however, accelerated by as much as a factor of nine (QA- to S2) and are the most likely explanation for the lower rate of photoautotrophic growth in the mutant. We conclude that the psbA gene from a higher plant can be expressed in cyanobacteria and its product processed and assembled into a functional chimeric photosystem II reaction center.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cogdell R. J., Crofts A. R. Some observations on the primary acceptor of Rhodopseudomonas viridis. FEBS Lett. 1972 Oct 15;27(1):176–178. doi: 10.1016/0014-5793(72)80435-6. [DOI] [PubMed] [Google Scholar]
- Debus R. J., Barry B. A., Sithole I., Babcock G. T., McIntosh L. Directed mutagenesis indicates that the donor to P+680 in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry. 1988 Dec 27;27(26):9071–9074. doi: 10.1021/bi00426a001. [DOI] [PubMed] [Google Scholar]
- Diner B. A. Dependence of the deactivation reactions of photosystem II on the redox state of plastoquinone pool A varied under anaerobic conditions; Equilibria on the acceptor side of photosystem II. Biochim Biophys Acta. 1977 May 11;460(2):247–258. doi: 10.1016/0005-2728(77)90211-0. [DOI] [PubMed] [Google Scholar]
- Dzelzkalns V. A., Owens G. C., Bogorad L. Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium. Nucleic Acids Res. 1984 Dec 11;12(23):8917–8925. doi: 10.1093/nar/12.23.8917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson J. M., Rahire M., Rochaix J. D. Chlamydomonas reinhardii gene for the 32 000 mol. wt. protein of photosystem II contains four large introns and is located entirely within the chloroplast inverted repeat. EMBO J. 1984 Dec 1;3(12):2753–2762. doi: 10.1002/j.1460-2075.1984.tb02206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
- JOLIOT A., JOLIOT P. ETUDE CIN'ETIQUE DE LA R'EACTION PHOTOCHIMIQUE LIB'ERANT L'OXYG'ENE AU COURS DE LA PHOTOSYNTH'ESE. C R Hebd Seances Acad Sci. 1964 May 4;258:4622–4625. [PubMed] [Google Scholar]
- Jansson C., Debus R. J., Osiewacz H. D., Gurevitz M., McIntosh L. Construction of an Obligate Photoheterotrophic Mutant of the Cyanobacterium Synechocystis 6803 : Inactivation of the psbA Gene Family. Plant Physiol. 1987 Dec;85(4):1021–1025. doi: 10.1104/pp.85.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karabin G. D., Farley M., Hallick R. B. Chloroplast gene for Mr 32000 polypeptide of photosystem II in Euglena gracilis is interrupted by four introns with conserved boundary sequences. Nucleic Acids Res. 1984 Jul 25;12(14):5801–5812. doi: 10.1093/nar/12.14.5801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marder J. B., Goloubinoff P., Edelman M. Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. Indications for COOH-terminal processing of a chloroplast membrane polypeptide. J Biol Chem. 1984 Mar 25;259(6):3900–3908. [PubMed] [Google Scholar]
- Metz J. G., Nixon P. J., Rögner M., Brudvig G. W., Diner B. A. Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry. 1989 Aug 22;28(17):6960–6969. doi: 10.1021/bi00443a028. [DOI] [PubMed] [Google Scholar]
- Morden C. W., Golden S. S. psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature. 1989 Jan 26;337(6205):382–385. doi: 10.1038/337382a0. [DOI] [PubMed] [Google Scholar]
- Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutherford A. W., Heathcote P., Evans M. C. Electron-paramagnetic-resonance measurements of the electron-transfer components of the reaction centre of Rhodopseudomonas viridis. Oxidation--reduction potentials and interactions of the electron acceptors. Biochem J. 1979 Aug 15;182(2):515–523. doi: 10.1042/bj1820515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüther U., Müller-Hill B. Easy identification of cDNA clones. EMBO J. 1983;2(10):1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shopes R. J., Wraight C. A. Charge recombination from the P+QA- state in reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta. 1987 Oct 7;893(3):409–425. doi: 10.1016/0005-2728(87)90093-4. [DOI] [PubMed] [Google Scholar]
- Shopes R. J., Wraight C. A. The acceptor quinone complex of Rhodopseudomonas viridis reaction centers. Biochim Biophys Acta. 1985 Mar 13;806(3):348–356. doi: 10.1016/0005-2728(85)90242-7. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Shiraishi T., Asada K. COOH-terminal residues of D1 and the 44 kDa CPa-2 at spinach photosystem II core complex. FEBS Lett. 1988 Nov 21;240(1-2):6–8. doi: 10.1016/0014-5793(88)80330-2. [DOI] [PubMed] [Google Scholar]
- Vrba J. M., Curtis S. E. Characterization of a four-member psbA gene family from the cyanobacterium Anabaena PCC 7120. Plant Mol Biol. 1990 Jan;14(1):81–92. doi: 10.1007/BF00015657. [DOI] [PubMed] [Google Scholar]