Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 May;3(5):461–471. doi: 10.1105/tpc.3.5.461

Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2.

J Q Wilkinson 1, N M Crawford 1
PMCID: PMC160014  PMID: 1840922

Abstract

Chlorate, the chlorine analog of nitrate, is a herbicide that has been used to select mutants impaired in the process of nitrate assimilation. In Arabidopsis thaliana, mutations at any one of eight distinct loci confer resistance to chlorate. The molecular identities of the genes at these loci are not known; however, one of these loci--chl3--maps very near the nitrate reductase structural gene NIA2. Through the isolation, characterization, and genetic analysis of new chlorate-resistant mutants generated by gamma irradiation, we have been able to demonstrate that the CHL3 gene and the NIA2 gene are identical. Three new chlorate-resistant mutants were identified that had deletions of the entire NIA2 gene. These nia2 null mutants were viable and still retained 10% of wild-type nitrate reductase activity in the leaves of the plants. All three deletion mutations were found to be new alleles of chl3. Introduction of the NIA2 gene back into these chl3 mutants by Agrobacterium-mediated transformation partially complemented their mutant phenotype. From these data, we conclude that Arabidopsis has at least two functional nitrate reductase genes and that the NIA2 gene product accounts for the majority of the leaf nitrate reductase activity and chlorate sensitivity of Arabidopsis plants.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 1981 Jul 10;9(13):3015–3027. doi: 10.1093/nar/9.13.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell W. H., Kinghorn K. R. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci. 1990 Aug;15(8):315–319. doi: 10.1016/0968-0004(90)90021-3. [DOI] [PubMed] [Google Scholar]
  4. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng C. L., Dewdney J., Nam H. G., den Boer B. G., Goodman H. M. A new locus (NIA 1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J. 1988 Nov;7(11):3309–3314. doi: 10.1002/j.1460-2075.1988.tb03201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi H. K., Kleinhofs A., An G. H. Nucleotide sequence of rice nitrate reductase genes. Plant Mol Biol. 1989 Dec;13(6):731–733. doi: 10.1007/BF00016030. [DOI] [PubMed] [Google Scholar]
  8. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daniel-Vedele F., Dorbe M. F., Caboche M., Rouzé P. Cloning and analysis of the tomato nitrate reductase-encoding gene: protein domain structure and amino acid homologies in higher plants. Gene. 1989 Dec 28;85(2):371–380. doi: 10.1016/0378-1119(89)90430-7. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Höfgen R., Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988 Oct 25;16(20):9877–9877. doi: 10.1093/nar/16.20.9877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nam H. G., Giraudat J., Den Boer B., Moonan F., Loos WDB., Hauge B. M., Goodman H. M. Restriction Fragment Length Polymorphism Linkage Map of Arabidopsis thaliana. Plant Cell. 1989 Jul;1(7):699–705. doi: 10.1105/tpc.1.7.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Redinbaugh M. G., Campbell W. H. Purification of Squash NADH:Nitrate Reductase by Zinc Chelate Affinity Chromatography. Plant Physiol. 1983 Jan;71(1):205–207. doi: 10.1104/pp.71.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  15. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  16. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vaucheret H., Vincentz M., Kronenberger J., Caboche M., Rouzé P. Molecular cloning and characterisation of the two homologous genes coding for nitrate reductase in tobacco. Mol Gen Genet. 1989 Mar;216(1):10–15. doi: 10.1007/BF00332224. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES