Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Jun;3(6):605–618. doi: 10.1105/tpc.3.6.605

Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture.

D W Hughes 1, G A Galau 1
PMCID: PMC160028  PMID: 1841720

Abstract

The major programs of gene expression during late embryogenesis are the muturation or reserve accumulation program and, after ovule abscission, the postabscission program that is composed largely of Lea and LeaA mRNAs that probably encode desiccation protectants. There are diverse opinions about the developmental regulators of these programs. Several candidates are evaluated here by measuring, in cultured embryos, the accumulation kinetics of cloned mRNAs specifically expressed in the normal maturation, postabscission, or germination programs of cotton. Maturation-stage embryos both terminate the maturation program and induce the postabscission program after excision and culture, just as they do later in the plant after ovule abscission. However, they also induce simultaneously the germination program and are thus different from any normal stage of embryo development or germination. The developmental induction of the postabscission program in culture does not require exogenous abscisic acid, but its expression is enhanced by precocious desiccation or culture on abscisic acid or high osmoticum, probably by an environmentally responsive mechanism that normally operates during germination. Normal desiccation does not control any of these programs because the embryo acquires all of the characteristics of a mature embryo before it desiccates. These and other results suggest regulation of normal embryogenesis by a maternal maturation factor, a postabscission factor, and the postabscission program.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray E. A., Beachy R. N. Regulation by ABA of beta-Conglycinin Expression in Cultured Developing Soybean Cotyledons. Plant Physiol. 1985 Nov;79(3):746–750. doi: 10.1104/pp.79.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Finkelstein R. R., Crouch M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 1986 Jul;81(3):907–912. doi: 10.1104/pp.81.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Finkelstein R. R., Tenbarge K. M., Shumway J. E., Crouch M. L. Role of ABA in Maturation of Rapeseed Embryos. Plant Physiol. 1985 Jul;78(3):630–636. doi: 10.1104/pp.78.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galau G. A., Bass H. W., Hughes D. W. Restriction fragment length polymorphisms in diploid and allotetraploid Gossypium: assigning the late embryogenesis-abundant (Lea) alloalleles in G. hirsutum. Mol Gen Genet. 1988 Feb;211(2):305–314. doi: 10.1007/BF00330608. [DOI] [PubMed] [Google Scholar]
  5. Ho D. T. Response of barley aleurone layers to abscisic Acid. Plant Physiol. 1976 Feb;57(2):175–178. doi: 10.1104/pp.57.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Irifune M., Ogino S., Harada T., Matsunaga T., Sakai K. [The desensitization therapy in children with nasal allergy to house dust]. Nihon Jibiinkoka Gakkai Kaiho. 1989 Mar;92(3):395–401. doi: 10.3950/jibiinkoka.92.395. [DOI] [PubMed] [Google Scholar]
  7. Lin L. S., Ho T. H. Mode of action of abscisic Acid in barley aleurone layers : induction of new proteins by abscisic Acid. Plant Physiol. 1986 Sep;82(1):289–297. doi: 10.1104/pp.82.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moore R., Smith J. D. Growth, graviresponsiveness and abscisic-acid content of Zea mays seedlings treated with fluridone. Planta. 1984;162:342–344. [PubMed] [Google Scholar]
  9. Morris P. C., Kumar A., Bowles D. J., Cuming A. C. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem. 1990 Jul 5;190(3):625–630. doi: 10.1111/j.1432-1033.1990.tb15618.x. [DOI] [PubMed] [Google Scholar]
  10. Quatrano R. S., Hopkins R., Raikhel N. V. Control of the synthesis and localization of wheat germ agglutinin during embryogenesis. Prog Clin Biol Res. 1983;138:117–130. [PubMed] [Google Scholar]
  11. Rosenberg L. A., Rinne R. W. Protein Synthesis during Natural and Precocious Soybean Seed (Glycine max [L.] Merr.) Maturation. Plant Physiol. 1988 Jun;87(2):474–478. doi: 10.1104/pp.87.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sánchez-Martínez D., Puigdomènech P., Pagès M. Regulation of Gene Expression in Developing Zea mays Embryos: Protein Synthesis during Embryogenesis and Early Germination of Maize. Plant Physiol. 1986 Oct;82(2):543–549. doi: 10.1104/pp.82.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vilardell J., Goday A., Freire M. A., Torrent M., Martínez M. C., Torné J. M., Pagès M. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol. 1990 Mar;14(3):423–432. doi: 10.1007/BF00028778. [DOI] [PubMed] [Google Scholar]
  15. Williamson J. D., Quatrano R. S. ABA-Regulation of Two Classes of Embryo-Specific Sequences in Mature Wheat Embryos. Plant Physiol. 1988 Jan;86(1):208–215. doi: 10.1104/pp.86.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES