Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Jun;3(6):629–635. doi: 10.1105/tpc.3.6.629

A Homolog of the Substrate Adhesion Molecule Vitronectin Occurs in Four Species of Flowering Plants.

LC Sanders 1, CS Wang 1, LL Walling 1, EM Lord 1
PMCID: PMC160030  PMID: 12324606

Abstract

The extracellular matrix (ECM) has been implicated in the primary developmental processes of many organisms. A family of secretory adhesive glycoproteins called substrate adhesion molecules (SAMs) is believed to confer these dynamic capabilities to the ECM in animals. In this paper, we report the existence of SAM-like genes and gene products in flowering plants. Hybridizations with a human vitronectin cDNA probe and genomic DNA from broad bean, soybean, and tomato revealed vitronectin-like sequences. Human vitronectin antibodies cross-react with a 55-kilodalton protein in leaf and root protein extracts from lily, broad bean, soybean, and tomato. In addition, immunocytochemical staining of frozen sections of lily leaf and broad bean gynoecium demonstrated that vitronectin-like proteins were localized to the ECM on the cell surface, with the most intense labeling residing in the transmitting tract of broad bean gynoecium.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bronner-Fraser M. Distribution of latex beads and retinal pigment epithelial cells along the ventral neural crest pathway. Dev Biol. 1982 May;91(1):50–63. doi: 10.1016/0012-1606(82)90007-0. [DOI] [PubMed] [Google Scholar]
  4. Bronner-Fraser M. Effects of different fragments of the fibronectin molecule on latex bead translocation along neural crest migratory pathways. Dev Biol. 1985 Mar;108(1):131–145. doi: 10.1016/0012-1606(85)90015-6. [DOI] [PubMed] [Google Scholar]
  5. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  6. Dufour S., Duband J. L., Kornblihtt A. R., Thiery J. P. The role of fibronectins in embryonic cell migrations. Trends Genet. 1988 Jul;4(7):198–203. doi: 10.1016/0168-9525(88)90076-5. [DOI] [PubMed] [Google Scholar]
  7. Green P. B. Plasticity in shoot development: a biophysical view. Symp Soc Exp Biol. 1986;40:211–232. [PubMed] [Google Scholar]
  8. Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayman E. G., Pierschbacher M. D., Suzuki S., Ruoslahti E. Vitronectin--a major cell attachment-promoting protein in fetal bovine serum. Exp Cell Res. 1985 Oct;160(2):245–258. doi: 10.1016/0014-4827(85)90173-9. [DOI] [PubMed] [Google Scholar]
  10. Hurkman W. J., Tanaka C. K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986 Jul;81(3):802–806. doi: 10.1104/pp.81.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  12. Newman S. A., Frenz D. A., Tomasek J. J., Rabuzzi D. D. Matrix-driven translocation of cells and nonliving particles. Science. 1985 May 17;228(4701):885–889. doi: 10.1126/science.4001925. [DOI] [PubMed] [Google Scholar]
  13. Pappas P. W. The use of a chrome alum-gelatin (subbing) solution as a general adhesive for paraffin sections. Stain Technol. 1971 May;46(3):121–124. doi: 10.3109/10520297109067835. [DOI] [PubMed] [Google Scholar]
  14. Roberts K. Structures at the plant cell surface. Curr Opin Cell Biol. 1990 Oct;2(5):920–928. doi: 10.1016/0955-0674(90)90093-t. [DOI] [PubMed] [Google Scholar]
  15. Sanders L. C., Lord E. M. Directed movement of latex particles in the gynoecia of three species of flowering plants. Science. 1989 Mar 24;243(4898):1606–1608. doi: 10.1126/science.243.4898.1606. [DOI] [PubMed] [Google Scholar]
  16. Schindler M., Meiners S., Cheresh D. A. RGD-dependent linkage between plant cell wall and plasma membrane: consequences for growth. J Cell Biol. 1989 May;108(5):1955–1965. doi: 10.1083/jcb.108.5.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Underwood P. A., Bennett F. A. A comparison of the biological activities of the cell-adhesive proteins vitronectin and fibronectin. J Cell Sci. 1989 Aug;93(Pt 4):641–649. doi: 10.1242/jcs.93.4.641. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES