Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783

Differential regulation of superoxide dismutases in plants exposed to environmental stress.

E W Tsang 1, C Bowler 1, D Hérouart 1, W Van Camp 1, R Villarroel 1, C Genetello 1, M Van Montagu 1, D Inzé 1
PMCID: PMC160045  PMID: 1820818

Abstract

Superoxide dismutases (SODs) are metalloproteins that catalyze the dismutation of superoxide radicals to hydrogen peroxide and oxygen. The enzyme is ubiquitous in aerobic organisms where it plays a major role in defense against oxygen radical-mediated toxicity. In plants, environmental adversity often leads to the increased generation of reduced oxygen species and, consequently, SOD has been proposed to be important in plant stress tolerance. Here we describe the isolation of a cDNA clone encoding a cytosolic copper/zinc SOD from Nicotiana plumbaginifolia. Using this, together with previously isolated cDNAs encoding the mitochondrial manganese SOD and the chloroplastic iron SOD as probes in RNA gel blot analyses, we have studied SOD transcript abundance during different stress conditions: in response to light, during photoinhibitory conditions (light combined with high or low temperatures), and in response to a xenobiotic stress imposed by the herbicide paraquat. Evidence is presented that iron SOD mRNA abundance increases whenever there is a chloroplast-localized oxidative stress, similar to the previous finding that manganese SOD responds to mitochondria-localized events. The diverse effects of the different stress conditions on SOD mRNA abundance thus might provide an insight into the way that each treatment affects the different subcellular compartments.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Kiso K., Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem. 1974 Apr 10;249(7):2175–2181. [PubMed] [Google Scholar]
  2. Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
  3. Becker J., Mezger V., Courgeon A. M., Best-Belpomme M. Hydrogen peroxide activates immediate binding of a Drosophila factor to DNA heat-shock regulatory element in vivo and in vitro. Eur J Biochem. 1990 May 20;189(3):553–558. doi: 10.1111/j.1432-1033.1990.tb15522.x. [DOI] [PubMed] [Google Scholar]
  4. Bowler C., Alliotte T., Van den Bulcke M., Bauw G., Vandekerckhove J., Van Montagu M., Inzé D. A plant manganese superoxide dismutase is efficiently imported and correctly processed by yeast mitochondria. Proc Natl Acad Sci U S A. 1989 May;86(9):3237–3241. doi: 10.1073/pnas.86.9.3237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cannon R. E., Scandalios J. G. Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Mol Gen Genet. 1989 Oct;219(1-2):1–8. doi: 10.1007/BF00261150. [DOI] [PubMed] [Google Scholar]
  6. Cannon R. E., White J. A., Scandalios J. G. Cloning of cDNA for maize superoxide dismutase 2 (SOD2). Proc Natl Acad Sci U S A. 1987 Jan;84(1):179–183. doi: 10.1073/pnas.84.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castresana C., de Carvalho F., Gheysen G., Habets M., Inzé D., Van Montagu M. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene. Plant Cell. 1990 Dec;2(12):1131–1143. doi: 10.1105/tpc.2.12.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Loose M., Alliotte T., Gheysen G., Genetello C., Gielen J., Soetaert P., Van Montagu M., Inzé D. Primary structure of a hormonally regulated beta-glucanase of Nicotiana plumbaginifolia. Gene. 1988 Oct 15;70(1):13–23. doi: 10.1016/0378-1119(88)90100-x. [DOI] [PubMed] [Google Scholar]
  9. Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986 May 15;247(1):1–11. doi: 10.1016/0003-9861(86)90526-6. [DOI] [PubMed] [Google Scholar]
  10. Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989 May 15;264(14):7761–7764. [PubMed] [Google Scholar]
  11. Jones J. D., Dunsmuir P., Bedbrook J. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 1985 Oct;4(10):2411–2418. doi: 10.1002/j.1460-2075.1985.tb03949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kapoor M., Sreenivasan G. M., Goel N., Lewis J. Development of thermotolerance in Neurospora crassa by heat shock and other stresses eliciting peroxidase induction. J Bacteriol. 1990 May;172(5):2798–2801. doi: 10.1128/jb.172.5.2798-2801.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaufman L. S., Thompson W. F., Briggs W. R. Different Red Light Requirements for Phytochrome-Induced Accumulation of cab RNA and rbcS RNA. Science. 1984 Dec 21;226(4681):1447–1449. doi: 10.1126/science.226.4681.1447. [DOI] [PubMed] [Google Scholar]
  14. Kitagawa Y., Tsunasawa S., Tanaka N., Katsube Y., Sakiyama F., Asada K. Amino acid sequence of copper,zinc-superoxide dismutase from spinach leaves. J Biochem. 1986 May;99(5):1289–1298. doi: 10.1093/oxfordjournals.jbchem.a135596. [DOI] [PubMed] [Google Scholar]
  15. Lowry C. V., Zitomer R. S. Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6129–6133. doi: 10.1073/pnas.81.19.6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mazur B. J., Chui C. F. Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylase-oxygenase from tobacco. Nucleic Acids Res. 1985 Apr 11;13(7):2373–2386. doi: 10.1093/nar/13.7.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8059–8063. doi: 10.1073/pnas.83.21.8059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]
  19. Privalle C. T., Fridovich I. Induction of superoxide dismutase in Escherichia coli by heat shock. Proc Natl Acad Sci U S A. 1987 May;84(9):2723–2726. doi: 10.1073/pnas.84.9.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steffens G. J., Michelson A. M., Otting F., Puget K., Strassburger W., Flohé L. Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes. Biol Chem Hoppe Seyler. 1986 Oct;367(10):1007–1016. doi: 10.1515/bchm3.1986.367.2.1007. [DOI] [PubMed] [Google Scholar]
  21. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES