Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1991 Sep;3(9):877–892. doi: 10.1105/tpc.3.9.877

A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development.

S Shannon 1, DR Meeks-Wagner 1
PMCID: PMC160057  PMID: 12324621

Abstract

We present the initial phenotypic characterization of an Arabidopsis mutation, terminal flower 1-1 (tfl1-1), that identifies a new genetic locus, TFL1. The tfl1-1 mutation causes early flowering and limits the development of the normally indeterminate inflorescence by promoting the formation of a terminal floral meristem. Inflorescence development in mutant plants often terminates with a compound floral structure consisting of the terminal flower and one or two subtending lateral flowers. The distal-most flowers frequently contain chimeric floral organs. Light microscopic examination shows no structural aberrations in the vegetative meristem or in the inflorescence meristem before the formation of floral buttresses. The wild-type appearance of lateral flowers and observations of double mutant combinations of tfl1-1 with the floral morphogenesis mutations apetala 1-1 (ap1-1), ap2-1, and agamous (ag) suggest that the tfl1-1 mutation does not affect normal floral meristems. Secondary flower formation usually associated with the ap1-1 mutation is suppressed in the terminal flower, but not in the lateral flowers, of tfl1-1 ap1-1 double mutants. Our results suggest that tfl1-1 perturbs the establishment and maintenance of the inflorescence meristem. The mutation lies on the top arm of chromosome 5 approximately 2.8 centimorgans from the restriction fragment length polymorphism marker 217.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hagberg L., Hull R., Hull S., Falkow S., Freter R., Svanborg Edén C. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun. 1983 Apr;40(1):265–272. doi: 10.1128/iai.40.1.265-272.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jegla D. E., Sussex I. M. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed. Dev Biol. 1989 Jan;131(1):215–225. doi: 10.1016/s0012-1606(89)80053-3. [DOI] [PubMed] [Google Scholar]
  4. Poethig R. S. Heterochronic mutations affecting shoot development in maize. Genetics. 1988 Aug;119(4):959–973. doi: 10.1093/genetics/119.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Poethig R. S. Phase change and the regulation of shoot morphogenesis in plants. Science. 1990 Nov 16;250(4983):923–930. doi: 10.1126/science.250.4983.923. [DOI] [PubMed] [Google Scholar]
  6. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES