Abstract
Differential screening of a mature Brassica campestris pollen cDNA library has identified five cDNA clones that represent transcripts expressed exclusively, or at elevated levels, in pollen. We show here that the expression of one of these, clone Bcp1, is tissue specific and temporally regulated. The gene is activated during microspore development, as detected by in situ hybridization. Expression is enhanced at the time of pollen maturation and during pollen germination. In situ hybridization has also shown that Bcp 1 is activated in the tapetal cells in early anther development and continues to be expressed until tapetal dissolution. Homologous transcripts are present in pollen of other taxa of Brassicaceae including Arabidopsis, but not in pollen of any other families tested.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albani D., Robert L. S., Donaldson P. A., Altosaar I., Arnison P. G., Fabijanski S. F. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol. 1990 Oct;15(4):605–622. doi: 10.1007/BF00017835. [DOI] [PubMed] [Google Scholar]
- Brown S. M., Crouch M. L. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell. 1990 Mar;2(3):263–274. doi: 10.1105/tpc.2.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg R. B. Plants: novel developmental processes. Science. 1988 Jun 10;240(4858):1460–1467. doi: 10.1126/science.3287622. [DOI] [PubMed] [Google Scholar]
- Griffith I. J., Smith P. M., Pollock J., Theerakulpisut P., Avjioglu A., Davies S., Hough T., Singh M. B., Simpson R. J., Ward L. D. Cloning and sequencing of Lol pI, the major allergenic protein of rye-grass pollen. FEBS Lett. 1991 Feb 25;279(2):210–215. doi: 10.1016/0014-5793(91)80151-r. [DOI] [PubMed] [Google Scholar]
- Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Mascarenhas J. P. The Male Gametophyte of Flowering Plants. Plant Cell. 1989 Jul;1(7):657–664. doi: 10.1105/tpc.1.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nacken W. K., Huijser P., Saedler H., Sommer H. Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus. FEBS Lett. 1991 Mar 11;280(1):155–158. doi: 10.1016/0014-5793(91)80226-s. [DOI] [PubMed] [Google Scholar]
- Pettitt J. M., Humphris D. C. Double lectin and immunolabelling for transmission electron microscopy: pre- and post-embedding application using the biotin-streptavidin system and colloidal gold-silver staining. Histochem J. 1991 Jan;23(1):29–37. doi: 10.1007/BF01886505. [DOI] [PubMed] [Google Scholar]
- Shayk M., Kolattukudy P. E. Production of a Novel Extracellular Cutinase by the Pollen and the Chemical Composition and Ultrastructure of the Stigma Cuticle of Nasturtium (Tropaeolum majus). Plant Physiol. 1977 Dec;60(6):907–915. doi: 10.1104/pp.60.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvanovich A., Astwood J., Zhang L., Olsen E., Kisil F., Sehon A., Mohapatra S., Hill R. Nucleotide sequence analysis of three cDNAs coding for Poa p IX isoallergens of Kentucky bluegrass pollen. J Biol Chem. 1991 Jan 15;266(2):1204–1210. [PubMed] [Google Scholar]
- Singh M. B., Hough T., Theerakulpisut P., Avjioglu A., Davies S., Smith P. M., Taylor P., Simpson R. J., Ward L. D., McCluskey J. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: intracellular targeting to the amyloplast. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1384–1388. doi: 10.1073/pnas.88.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh M. B., Knox R. B. Quantitative cytochemistry of beta-galactosidase in normal and enzyme deficient (gal) pollen of Brassica campestris: application of the indigogenic method. Histochem J. 1984 Dec;16(12):1273–1296. doi: 10.1007/BF01003726. [DOI] [PubMed] [Google Scholar]
- Singh M. B., O'neill P. M., Knox R. B. Initiation of Postmeiotic beta-Galactosidase Synthesis during Microsporogenesis in Oilseed Rape. Plant Physiol. 1985 Jan;77(1):225–228. doi: 10.1104/pp.77.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stieglitz H., Stern H. Regulation of beta-1,3-glucanase activity in developing anthers of Lilium. Dev Biol. 1973 Sep;34(1):169–173. doi: 10.1016/0012-1606(73)90347-3. [DOI] [PubMed] [Google Scholar]
- Stinson J. R., Eisenberg A. J., Willing R. P., Pe M. E., Hanson D. D., Mascarenhas J. P. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 1987 Feb;83(2):442–447. doi: 10.1104/pp.83.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ursin V. M., Yamaguchi J., McCormick S. Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell. 1989 Jul;1(7):727–736. doi: 10.1105/tpc.1.7.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vergne P., Delvallee I., Dumas C. Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol. 1987 Sep;62(5):299–304. doi: 10.3109/10520298709108014. [DOI] [PubMed] [Google Scholar]
- Vithanage H. I., Knox R. B. Pollen-wall proteins: quantitative cytochemistry of the origins of intine and exine enzymes in Brassica oleracea. J Cell Sci. 1976 Jul;21(2):423–435. doi: 10.1242/jcs.21.2.423. [DOI] [PubMed] [Google Scholar]
- Wing R. A., Yamaguchi J., Larabell S. K., Ursin V. M., McCormick S. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol Biol. 1990 Jan;14(1):17–28. doi: 10.1007/BF00015651. [DOI] [PubMed] [Google Scholar]