Skip to main content
British Medical Journal logoLink to British Medical Journal
. 1980 Feb 9;280(6211):355–357. doi: 10.1136/bmj.280.6211.355

Intracellular calcium and pathogenesis and antenatal diagnosis of Duchenne muscular dystrophy.

A E Emery, D Burt
PMCID: PMC1600871  PMID: 7362971

Abstract

One of the earliest and most important abnormalities of fetal muscle in Duchenne muscular dystrophy is an increase in eosinophilic fibres (those that stain darkly with eosin). A study of normal and at-risk male fetuses after abortion was carried out, which showed that these eosinophilic fibres contain increased intracellular calcium, which suggests that this is an early biochemical change in the disorder. Since increased intracellular calcium would account for various biochemical and clinical features of the disease, it may be related to the primary defect. Thus an increase in muscle fibres containing increased intracellular calcium in at-risk fetuses may provide an additional means of assessing the validity of any future presumptive antenatal test for Duchenne muscular dystrophy.

Full text

PDF
355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodensteiner J. B., Engel A. G. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology. 1978 May;28(5):439–446. doi: 10.1212/wnl.28.5.439. [DOI] [PubMed] [Google Scholar]
  2. Carpenter S., Karpati G. Duchenne muscular dystrophy: plasma membrane loss initiates muscle cell necrosis unless it is repaired. Brain. 1979 Mar;102(1):147–161. doi: 10.1093/brain/102.1.147. [DOI] [PubMed] [Google Scholar]
  3. DAHL L. K. A simple and sensitive histochemical method for calcium. Proc Soc Exp Biol Med. 1952 Jul;80(3):474–479. doi: 10.3181/00379727-80-19661. [DOI] [PubMed] [Google Scholar]
  4. Dise C. A., Goodman D. B., Lake W. C., Hodson A., Rasmussen H. Enhanced sensitivity to calcium in Duchenne muscular dystrophy. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1286–1292. doi: 10.1016/0006-291x(77)91145-7. [DOI] [PubMed] [Google Scholar]
  5. Duncan C. J. Role of intracellular calcium in promoting muscle damage: a strategy for controlling the dystrophic condition. Experientia. 1978 Dec 15;34(12):1531–1535. doi: 10.1007/BF02034655. [DOI] [PubMed] [Google Scholar]
  6. Dunn M. J. Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology. Biochim Biophys Acta. 1974 May 30;352(1):97–116. doi: 10.1016/0005-2736(74)90182-5. [DOI] [PubMed] [Google Scholar]
  7. Emery A. E., Burt D., Dubowitz V., Rocker I., Donnai D., Harris R., Donnai P. Antenatal diagnosis of Duchenne muscular dystrophy. Lancet. 1979 Apr 21;1(8121):847–849. doi: 10.1016/s0140-6736(79)91264-9. [DOI] [PubMed] [Google Scholar]
  8. Emery A. E. Muscle histology and creatine kinase levels in the foetus in Duchenne muscular dystrophy. Nature. 1977 Mar 31;266(5601):472–473. doi: 10.1038/266472a0. [DOI] [PubMed] [Google Scholar]
  9. Godin D. V., Bridges M. A., MacLeod P. J. Chemical compositional studies of erythrocyte membranes in Duchenne muscular dystrophy. Res Commun Chem Pathol Pharmacol. 1978 May;20(2):331–349. [PubMed] [Google Scholar]
  10. Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
  11. Kirkpatrick F. H., Hillman D. G., La Celle P. L. A23187 and red cells: changes in deformability, K+, Mg-2+, Ca-2+ and ATP. Experientia. 1975 Jun 15;31(6):653–654. doi: 10.1007/BF01944610. [DOI] [PubMed] [Google Scholar]
  12. Lake W., Rasmussen H., Goodman D. B. Effect of ionophore A23187 upon membrane function and ion movement in human and toad erythrocytes. J Membr Biol. 1977 Apr 7;32(1-2):93–113. doi: 10.1007/BF01905211. [DOI] [PubMed] [Google Scholar]
  13. Maunder C. A., Yarom R., Dubowitz V. Electron-microscopic X-ray microanalysis of normal and diseased human muscle. J Neurol Sci. 1977 Sep;33(3):323–334. doi: 10.1016/0022-510x(77)90129-0. [DOI] [PubMed] [Google Scholar]
  14. Neerunjun J. S., Dubowitz V. Increased calcium-activated neutral protease activity in muscles of dystrophic hamsters and mice. J Neurol Sci. 1979 Feb;40(2-3):105–111. doi: 10.1016/0022-510x(79)90196-5. [DOI] [PubMed] [Google Scholar]
  15. Oberc M. A., Engel W. K. Ultrastructural localization of calcium in normal and abnormal skeletal muscle. Lab Invest. 1977 Jun;36(6):566–577. [PubMed] [Google Scholar]
  16. Schreiner G. F., Unanue E. R. Calcium-sensitive modulation of Ig capping: evidence supporting a cytoplasmic control of ligand-receptor complexes. J Exp Med. 1976 Jan 1;143(1):15–31. doi: 10.1084/jem.143.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Soybel D., Morgan J., Cohen L. Calcium augmentation of enzyme leakage from mouse skeletal muscle and its possible site of action. Res Commun Chem Pathol Pharmacol. 1978 May;20(2):317–329. [PubMed] [Google Scholar]
  18. White J. G. Effects of an ionophore, A23187, on the surface morphology of normal erythrocytes. Am J Pathol. 1974 Dec;77(3):507–518. [PMC free article] [PubMed] [Google Scholar]
  19. Wrogemann K., Pena S. D. Mitochondrial calcium overload: A general mechanism for cell-necrosis in muscle diseases. Lancet. 1976 Mar 27;1(7961):672–674. doi: 10.1016/s0140-6736(76)92781-1. [DOI] [PubMed] [Google Scholar]

Articles from British Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES