Abstract
Expression of hrp (hypersensitive reaction and pathogenicity) genes from Xanthomonas campestris pv vesicatoria is suppressed in complex media but induced in the plant. We examined the effects of macronutrients on transcription of hrp-gusA ([beta]-glucuronidase) fusions by growth of the bacteria in defined medium. Modified MM1 minimal medium, supplemented with casamino acids, was able to induce hrpF strongly when sucrose or fructose was added as a carbon source. However, high concentrations of casamino acids suppressed hrpF induction. Sulfur-containing amino acids were required for induction, with methionine induction being comparable to induction in plants. Both sucrose and methionine were required for induction. Induction in medium optimal for hrpF induction, designated XVM1, occurred at pH 5.5 to pH 7.5. High concentrations of phosphate or sodium chloride suppressed gene activation. Gene induction was inhibited by succinate, citrate, pyruvate, and glutamine. Expression levels of different hrp loci from X. c. vesicatoria in XVM1 varied, dependent on the genetic background of the Xanthomonas strain used. The results suggest that several control mechanisms might be involved in the expression of hrp genes.
Full Text
The Full Text of this article is available as a PDF (705.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arlat M., Gough C. L., Barber C. E., Boucher C., Daniels M. J. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):593–601. doi: 10.1094/mpmi-4-593. [DOI] [PubMed] [Google Scholar]
- Bonas U., Stall R. E., Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet. 1989 Jul;218(1):127–136. doi: 10.1007/BF00330575. [DOI] [PubMed] [Google Scholar]
- Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halpern Y. S. Genetics of amino acid transport in bacteria. Annu Rev Genet. 1974;8:103–133. doi: 10.1146/annurev.ge.08.120174.000535. [DOI] [PubMed] [Google Scholar]
- Huynh T. V., Dahlbeck D., Staskawicz B. J. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science. 1989 Sep 22;245(4924):1374–1377. doi: 10.1126/science.2781284. [DOI] [PubMed] [Google Scholar]
- Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamoun S., Kado C. I. A plant-inducible gene of Xanthomonas campestris pv. campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts. J Bacteriol. 1990 Sep;172(9):5165–5172. doi: 10.1128/jb.172.9.5165-5172.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy A., Glaser P., Danchin A. Aspects of the regulation of adenylate cyclase synthesis in Escherichia coli K12. J Gen Microbiol. 1988 Feb;134(2):359–367. doi: 10.1099/00221287-134-2-359. [DOI] [PubMed] [Google Scholar]
- Winans S. C., Kerstetter R. A., Nester E. W. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol. 1988 Sep;170(9):4047–4054. doi: 10.1128/jb.170.9.4047-4054.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]