Abstract
We have used a novel assay based on protein fusions with lambda repressor to identify two small regions within phytochrome's carboxy-terminal domain that are capable of mediating dimerization. Using an in vivo assay, fusions between the DNA binding, amino-terminal domain of lambda repressor and fragments from oat PhyA phytochrome have been assayed for increased repressor activity, an indicator of dimerization. In this assay system, regions of oat phytochrome between amino acids V623-S673 and N1049-Q1129 have been shown to increase repressor activity. These short spans are highly conserved between proteins belonging to the phytochrome PhyA family. Embedded within these sequences are four segments that could potentially form amphipathic alpha helices. Two of the segments are well conserved between PhyA phytochrome and phytochromes encoded by the phyB and phyC genes, suggesting that heterodimers might form by way of subunit interaction at these sites.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carr D. W., Stofko-Hahn R. E., Fraser I. D., Bishop S. M., Acott T. S., Brennan R. G., Scott J. D. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem. 1991 Aug 5;266(22):14188–14192. [PubMed] [Google Scholar]
- Choi J. K., Kim I. S., Kwon T. I., Parker W., Song P. S. Spectral perturbations and oligomer/monomer formation in 124-kilodalton Avena phytochrome. Biochemistry. 1990 Jul 24;29(29):6883–6891. doi: 10.1021/bi00481a018. [DOI] [PubMed] [Google Scholar]
- Christensen A. H., Quail P. H. Structure and expression of a maize phytochrome-encoding gene. Gene. 1989 Dec 28;85(2):381–390. doi: 10.1016/0378-1119(89)90431-9. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht M. H., Nelson H. C., Sauer R. T. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc Natl Acad Sci U S A. 1983 May;80(9):2676–2680. doi: 10.1073/pnas.80.9.2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershey H. P., Barker R. F., Idler K. B., Lissemore J. L., Quail P. H. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res. 1985 Dec 9;13(23):8543–8559. doi: 10.1093/nar/13.23.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu J. C., O'Shea E. K., Kim P. S., Sauer R. T. Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science. 1990 Dec 7;250(4986):1400–1403. doi: 10.1126/science.2147779. [DOI] [PubMed] [Google Scholar]
- Johnson A. D., Pabo C. O., Sauer R. T. Bacteriophage lambda repressor and cro protein: interactions with operator DNA. Methods Enzymol. 1980;65(1):839–856. doi: 10.1016/s0076-6879(80)65078-2. [DOI] [PubMed] [Google Scholar]
- Jones A. M., Cochran D. S., Lamerson P. M., Evans M. L., Cohen J. D. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl. Plant Physiol. 1991;97:352–358. doi: 10.1104/pp.97.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones A. M., Erickson H. P. Domain structure of phytochrome from Avena sativa visualized by electron microscopy. Photochem Photobiol. 1989 Apr;49(4):479–483. doi: 10.1111/j.1751-1097.1989.tb09198.x. [DOI] [PubMed] [Google Scholar]
- Kawai N., Miwa A., Shimazaki K., Sahara Y., Robinson H. P., Nakajima T. Spider toxin and the glutamate receptors. Comp Biochem Physiol C. 1991;98(1):87–95. [PubMed] [Google Scholar]
- Kay S. A., Keith B., Shinozaki K., Chua N. H. The sequence of the rice phytochrome gene. Nucleic Acids Res. 1989 Apr 11;17(7):2865–2866. doi: 10.1093/nar/17.7.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
- McMichael R. W., Jr, Lagarias J. C. Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro. Biochemistry. 1990 Apr 24;29(16):3872–3878. doi: 10.1021/bi00468a011. [DOI] [PubMed] [Google Scholar]
- Meyer B. J., Maurer R., Ptashne M. Gene regulation at the right operator (OR) of bacteriophage lambda. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J Mol Biol. 1980 May 15;139(2):163–194. doi: 10.1016/0022-2836(80)90303-4. [DOI] [PubMed] [Google Scholar]
- Nishikawa K., Noguchi T. Predicting protein secondary structure based on amino acid sequence. Methods Enzymol. 1991;202:31–44. doi: 10.1016/0076-6879(91)02005-t. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
- Partis M. D., Grimm R. Computer analysis of phytochrome sequences from five species: implications for the mechanism of action. Z Naturforsch C. 1990 Sep-Oct;45(9-10):987–998. doi: 10.1515/znc-1990-9-1010. [DOI] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
- Sauer R. T., Jordan S. R., Pabo C. O. Lambda repressor: a model system for understanding protein-DNA interactions and protein stability. Adv Protein Chem. 1990;40:1–61. doi: 10.1016/s0065-3233(08)60286-7. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
- Sharrock R. A., Lissemore J. L., Quail P. H. Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone: identification of conserved features by comparison with Avena phytochrome. Gene. 1986;47(2-3):287–295. doi: 10.1016/0378-1119(86)90072-7. [DOI] [PubMed] [Google Scholar]
- Thompson L. K., Pratt L. H., Cordonnier M. M., Kadwell S., Darlix J. L., Crossland L. Fusion protein-based epitope mapping of phytochrome. Precise identification of an evolutionarily conserved domain. J Biol Chem. 1989 Jul 25;264(21):12426–12431. [PubMed] [Google Scholar]
- Weiss M. A., Pabo C. O., Karplus M., Sauer R. T. Dimerization of the operator binding domain of phage lambda repressor. Biochemistry. 1987 Feb 10;26(3):897–904. doi: 10.1021/bi00377a034. [DOI] [PubMed] [Google Scholar]
- Yamamoto K. T., Tokutomi S. Formation of aggregates of tryptic fragments derived from the carboxyl-terminal half of pea phytochrome and localization of the site of contact between the fragments by amino-terminal amino acid sequence analysis. Photochem Photobiol. 1989 Jul;50(1):113–120. doi: 10.1111/j.1751-1097.1989.tb04136.x. [DOI] [PubMed] [Google Scholar]