Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Mar;4(3):253–262. doi: 10.1105/tpc.4.3.253

Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility.

I M van der Meer 1, M E Stam 1, A J van Tunen 1, J N Mol 1, A R Stuitje 1
PMCID: PMC160126  PMID: 1498595

Abstract

Inhibition of flower pigmentation in transgenic petunia plants was previously accomplished by expressing an antisense chalcone synthase (chs) gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. This chimeric gene was not effective in inhibiting pigmentation in anthers, presumably because the viral CaMV 35S promoter was insufficiently expressed in cell types of this organ in which the pigments are produced. Insertion of the anther box, a homologous sequence found in other genes expressed in anthers, resulted in a modified expression pattern driven by this promoter, as monitored by the beta-glucuronidase (gus) gene. In addition to the basic CaMV 35S expression pattern in anthers, GUS activity was observed in tapetum cells when the modified promoter was fused to the gus gene. This promoter construct was subsequently used to drive an antisense chs gene in transgenic petunia, which led to the inhibition of pigment synthesis in anthers of five of 35 transformants. Transgenic plants with white anthers were male sterile due to an arrest in male gametophyte development. This finding indicated that flavonoids play an essential role in male gametophyte development.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Beld M., Martin C., Huits H., Stuitje A. R., Gerats A. G. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol. 1989 Nov;13(5):491–502. doi: 10.1007/BF00027309. [DOI] [PubMed] [Google Scholar]
  3. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drews G. N., Goldberg R. B. Genetic control of flower development. Trends Genet. 1989 Aug;5(8):256–261. doi: 10.1016/0168-9525(89)90098-x. [DOI] [PubMed] [Google Scholar]
  5. Herdt E., Sütfeld R., Wiermann R. The occurrence of enzymes involved in phenylpropanoid metabolism in the tapetum fraction of anthers. Cytobiologie. 1978 Aug;17(2):433–441. [PubMed] [Google Scholar]
  6. Hrazdina G., Wagner G. J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985 Feb 15;237(1):88–100. doi: 10.1016/0003-9861(85)90257-7. [DOI] [PubMed] [Google Scholar]
  7. Jacobs M., Rubery P. H. Naturally occurring auxin transport regulators. Science. 1988 Jul 15;241(4863):346–349. doi: 10.1126/science.241.4863.346. [DOI] [PubMed] [Google Scholar]
  8. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol. 1990 Dec;8(12):340–344. doi: 10.1016/0167-7799(90)90220-r. [DOI] [PubMed] [Google Scholar]
  10. Lam E., Benfey P. N., Gilmartin P. M., Fang R. X., Chua N. H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7890–7894. doi: 10.1073/pnas.86.20.7890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
  12. Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
  13. Schmelzer E., Jahnen W., Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A. 1988 May;85(9):2989–2993. doi: 10.1073/pnas.85.9.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Skriver K., Olsen F. L., Rogers J. C., Mundy J. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7266–7270. doi: 10.1073/pnas.88.16.7266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van Tunen A. J., Mur L. A., Brouns G. S., Rienstra J. D., Koes R. E., Mol J. N. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene. Plant Cell. 1990 May;2(5):393–401. doi: 10.1105/tpc.2.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van der Krol A. R., Mur L. A., de Lange P., Mol J. N., Stuitje A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol. 1990 Apr;14(4):457–466. doi: 10.1007/BF00027492. [DOI] [PubMed] [Google Scholar]
  18. van der Meer I. M., Spelt C. E., Mol J. N., Stuitje A. R. Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. Plant Mol Biol. 1990 Jul;15(1):95–109. doi: 10.1007/BF00017727. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES