Abstract
Genetic evidence is presented to show that the developmental stability of maternal cells in the pedicel at the base of maize seeds is determined by the genotype of the developing endosperm. An early degeneration and withdrawal of maternal cells from the endosperm of homozygous miniature (mn mn) seed mutants were arrested if mn plants were pollinated by the wild-type Mn pollen. Similarly, the stability of the wild-type, Mn mn, maternal cells was also dependent on whether or not these cells were associated with the normal (Mn) or the mutant (mn) endosperm on the same ear. Biochemical and cellular analyses indicated that developing mn kernels have extremely low (<0.5% of the wild type) to undetectable levels of both soluble and wall-bound invertase activities. Extracts from endosperm with a single copy of the Mn gene showed a significant increase in both forms of invertases, and we suggest it is the causal basis of the wild-type seed phenotype. Collectively, these data provide evidence that invertase-mediated maintenance of a physiological gradient of photosynthate between pedicel and endosperm constitutes the rate-limiting step in structural stability of maternal cells as well as normal development of endosperm and seed.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bracho G. E., Whitaker J. R. Purification and Partial Characterization of Potato (Solanum tuberosum) Invertase and Its Endogenous Proteinaceous Inhibitor. Plant Physiol. 1990 Feb;92(2):386–394. doi: 10.1104/pp.92.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
- Carlson M., Osmond B. C., Botstein D. Mutants of yeast defective in sucrose utilization. Genetics. 1981 May;98(1):25–40. doi: 10.1093/genetics/98.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chourey P. S., Nelson O. E. Interallelic Complementation at the sh Locus in Maize at the Enzyme Level. Genetics. 1979 Feb;91(2):317–325. doi: 10.1093/genetics/91.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson C. D., Altabella T., Chrispeels M. J. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol. 1991 Feb;95(2):420–425. doi: 10.1104/pp.95.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felker F. C., Shannon J. C. Movement of C-labeled Assimilates into Kernels of Zea mays L: III. AN ANATOMICAL EXAMINATION AND MICROAUTORADIOGRAPHIC STUDY OF ASSIMILATE TRANSFER. Plant Physiol. 1980 May;65(5):864–870. doi: 10.1104/pp.65.5.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannah L. C., Nelson O. E. Characterization of adenosine diphosphate glucose pyrophosphorylases from developing maize seeds. Plant Physiol. 1975 Feb;55(2):297–302. doi: 10.1104/pp.55.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlman D., Halvorson H. O. Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell. 1981 Aug;25(2):525–536. doi: 10.1016/0092-8674(81)90071-4. [DOI] [PubMed] [Google Scholar]
- Porter G. A., Knievel D. P., Shannon J. C. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue. Plant Physiol. 1985 Mar;77(3):524–531. doi: 10.1104/pp.77.3.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shannon J. C. Movement of C-Labeled Assimilates into Kernels of Zea mays L: I. Pattern and Rate of Sugar Movement. Plant Physiol. 1972 Feb;49(2):198–202. doi: 10.1104/pp.49.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. Y., Salamini F., Nelson O. E. Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 1970 Aug;46(2):299–306. doi: 10.1104/pp.46.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil M., Rausch T. Cell wall invertase in tobacco crown gall cells : enzyme properties and regulation by auxin. Plant Physiol. 1990 Dec;94(4):1575–1581. doi: 10.1104/pp.94.4.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]