Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Mar;4(3):349–357. doi: 10.1105/tpc.4.3.349

Induction of Malate Synthase Gene Expression in Senescent and Detached Organs of Cucumber.

IA Graham 1, CJ Leaver 1, SM Smith 1
PMCID: PMC160134  PMID: 12297649

Abstract

Expression of the malate synthase (MS) gene is activated in cotyledons of cucumber seedlings during postgerminative growth and then repressed as the cotyledons become photosynthetic. MS gene expression is subsequently reactivated in the cotyledons as they senesce a few weeks later. In situ hybridization revealed that MS RNA is distributed throughout the organ during postgerminative growth and senescence, showing that the same cells express the gene at different stages of development. MS RNA also appears in senescing leaves and petals of cucumber plants. In addition, we found that MS RNA appears in mature expanded leaves and roots when they are removed from the plant and incubated in darkness for several days, thus providing a potential experimental system for the manipulation of MS gene expression. Leaves from transgenic Nicotiana plumbaginifolia containing the cucumber MS promoter fused to the [beta]-glucuronidase (GUS) reporter gene accumulated GUS activity when detached, demonstrating an activation of transcription from the MS promoter following leaf excision. These results are discussed in terms of the metabolic regulation of MS gene expression.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitt S., McCullough W., Roberts C. F. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol. 1976 Feb;92(2):263–282. doi: 10.1099/00221287-92-2-263. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker W. M., Leaver C. J., Weir E. M., Riezman H. Regulation of Glyoxysomal Enzymes during Germination of Cucumber: I. Developmental Changes in Cotyledonary Protein, RNA, and Enzyme Activities during Germination. Plant Physiol. 1978 Oct;62(4):542–549. doi: 10.1104/pp.62.4.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castresana C., Garcia-Luque I., Alonso E., Malik V. S., Cashmore A. R. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J. 1988 Jul;7(7):1929–1936. doi: 10.1002/j.1460-2075.1988.tb03030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comai L., Dietrich R. A., Maslyar D. J., Baden C. S., Harada J. J. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell. 1989 Mar;1(3):293–300. doi: 10.1105/tpc.1.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  7. Graham I. A., Smith L. M., Leaver C. J., Smith S. M. Developmental regulation of expression of the malate synthase gene in transgenic plants. Plant Mol Biol. 1990 Oct;15(4):539–549. doi: 10.1007/BF00017829. [DOI] [PubMed] [Google Scholar]
  8. Graves L. B., Jr, Becker W. M. Beta-oxidation in glyoxysomes from Euglena. J Protozool. 1974 Nov;21(5):771–774. doi: 10.1111/j.1550-7408.1974.tb03750.x. [DOI] [PubMed] [Google Scholar]
  9. Hillier S., Charnetzky W. T. Glyoxylate bypass enzymes in Yersinia species and multiple forms of isocitrate lyase in Yersinia pestis. J Bacteriol. 1981 Jan;145(1):452–458. doi: 10.1128/jb.145.1.452-458.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KORNBERG H. L., BEEVERS H. The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biochim Biophys Acta. 1957 Dec;26(3):531–537. doi: 10.1016/0006-3002(57)90101-4. [DOI] [PubMed] [Google Scholar]
  11. KORNBERG H. L., MADSEN N. B. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta. 1957 Jun;24(3):651–653. doi: 10.1016/0006-3002(57)90268-8. [DOI] [PubMed] [Google Scholar]
  12. King H. B., Casselton L. A. Genetics and function of isocitrate lyase in Coprinus. Mol Gen Genet. 1977 Dec 9;157(3):319–325. doi: 10.1007/BF00268669. [DOI] [PubMed] [Google Scholar]
  13. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lado P., Schwendimann M., Marrè E. Repression of isocitrate lyase synthesis in seeds germinated in the presence of glucose. Biochim Biophys Acta. 1968 Mar 18;157(1):140–148. doi: 10.1016/0005-2787(68)90272-4. [DOI] [PubMed] [Google Scholar]
  15. Langdale J. A., Rothermel B. A., Nelson T. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 1988 Jan;2(1):106–115. doi: 10.1101/gad.2.1.106. [DOI] [PubMed] [Google Scholar]
  16. McCullough W., John P. C. Control of de novo isocitrate lyase synthesis in Chlorella. Nature. 1972 Oct 13;239(5372):402–405. doi: 10.1038/239402a0. [DOI] [PubMed] [Google Scholar]
  17. Nelson T., Harpster M. H., Mayfield S. P., Taylor W. C. Light-regulated gene expression during maize leaf development. J Cell Biol. 1984 Feb;98(2):558–564. doi: 10.1083/jcb.98.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rodriguez D., Ginger R. S., Baker A., Northcote D. H. Nucleotide sequence analysis of a cDNA clone encoding malate synthase of castor bean (Ricinus communis) reveals homology to DAL7, a gene involved in allantoin degradation in Saccharomyces cerevisiae. Plant Mol Biol. 1990 Sep;15(3):501–504. doi: 10.1007/BF00019167. [DOI] [PubMed] [Google Scholar]
  19. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sjogren R. E., Romano A. H. Evidence for multiple forms of isocitrate lyase in Neurospora crassa. J Bacteriol. 1967 May;93(5):1638–1643. doi: 10.1128/jb.93.5.1638-1643.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith S. M., Leaver C. J. Glyoxysomal Malate Synthase of Cucumber: Molecular Cloning of a cDNA and Regulation of Enzyme Synthesis during Germination. Plant Physiol. 1986 Jul;81(3):762–767. doi: 10.1104/pp.81.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Theimer R. R., Beevers H. Uricase and allantoinase in glyoxysomes. Plant Physiol. 1971 Feb;47(2):246–251. doi: 10.1104/pp.47.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Turley R. B., Trelease R. N. Development and regulation of three glyoxysomal enzymes during cotton seed maturation and growth. Plant Mol Biol. 1990 Feb;14(2):137–146. doi: 10.1007/BF00018555. [DOI] [PubMed] [Google Scholar]
  24. Yoo H. S., Cooper T. G. The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene's expression. Mol Cell Biol. 1989 Aug;9(8):3231–3243. doi: 10.1128/mcb.9.8.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES