Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 May;4(5):583–595. doi: 10.1105/tpc.4.5.583

Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis.

J Swinburne 1, L Balcells 1, S R Scofield 1, J D Jones 1, G Coupland 1
PMCID: PMC160155  PMID: 1323366

Abstract

The Activator (Ac) element of maize is active at a low frequency in Arabidopsis. To determine whether this is due to poor expression of the Ac transposase gene, we obtained and studied 19 Arabidopsis transformants containing fusions of the octopine synthase (ocs), nopaline synthase (nos), cauliflower mosaic virus (CaMV) 35S, or Ac promoters to the transposase open reading frame. These transformants were examined both for their ability to drive excision of a Dissociation (Ds) element from a streptomycin resistance gene and for the abundance of the transposase mRNA. Most transformants containing the CaMV 35S fusion have high levels of transposase transcript and drive high frequencies of somatic and germinal excision. These results demonstrated that Arabidopsis contains all of the host functions required for high frequency excision of Ds. Moreover, transposase mRNA abundance varied about 1000-fold among our transformants; this variation enabled us to demonstrate that for the Ac, ocs, and CaMV 35S fusion, raising the mRNA level is closely correlated with increasing excision frequency. We discuss our data in relation to the behavior of Ac in Arabidopsis, maize, and tobacco.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benfey P. N., Ren L., Chua N. H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 1989 Aug;8(8):2195–2202. doi: 10.1002/j.1460-2075.1989.tb08342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coupland G., Plum C., Chatterjee S., Post A., Starlinger P. Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9385–9388. doi: 10.1073/pnas.86.23.9385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 1985 Jul 11;13(13):4777–4788. doi: 10.1093/nar/13.13.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dooner H. K., Belachew A. Transposition Pattern of the Maize Element Ac from the Bz-M2(ac) Allele. Genetics. 1989 Jun;122(2):447–457. doi: 10.1093/genetics/122.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Fusswinkel H., Schein S., Courage U., Starlinger P., Kunze R. Detection and abundance of mRNA and protein encoded by transposable element activator (Ac) in maize. Mol Gen Genet. 1991 Feb;225(2):186–192. doi: 10.1007/BF00269846. [DOI] [PubMed] [Google Scholar]
  8. Haring M. A., Rommens C. M., Nijkamp H. J., Hille J. The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol Biol. 1991 Mar;16(3):449–461. doi: 10.1007/BF00023995. [DOI] [PubMed] [Google Scholar]
  9. Hehl R., Baker B. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell. 1990 Aug;2(8):709–721. doi: 10.1105/tpc.2.8.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones J. D., Carland F. M., Maliga P., Dooner H. K. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science. 1989 Apr 14;244(4901):204–207. doi: 10.1126/science.244.4901.204. [DOI] [PubMed] [Google Scholar]
  11. Laufs J., Wirtz U., Kammann M., Matzeit V., Schaefer S., Schell J., Czernilofsky A. P., Baker B., Gronenborn B. Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7752–7756. doi: 10.1073/pnas.87.19.7752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  13. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scofield S. R., Harrison K., Nurrish S. J., Jones J. D. Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell. 1992 May;4(5):573–582. doi: 10.1105/tpc.4.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Van Sluys M. A., Tempé J., Fedoroff N. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 1987 Dec 20;6(13):3881–3889. doi: 10.1002/j.1460-2075.1987.tb02728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES