Abstract
The Chlamydomonas reinhardtii chloroplast gene chlL (frxC) is shown to be involved in the light-independent conversion of protochlorophyllide to chlorophyllide. The polypeptide encoded by chlL contains a striking 53% amino acid sequence identity with the bacteriochlorophyll (bch) biosynthesis bchL gene product in the photosynthetic bacterium Rhodobacter capsulatus. In a previous analysis, we demonstrated that bchL was involved in light-independent protochlorophyllide reduction, thereby implicating chlL in light-independent protochlorophyllide reduction in photosynthetic eukaryotes. To perform a functional/mutational analysis of chlL, we utilized particle gun-mediated transformation to disrupt the structural sequence of chlL at its endogenous locus in the chloroplast genome of Chlamydomonas. Transformants for which the multicopy chloroplast genome was homoplasmic for the disrupted chlL allele exhibit a "yellow-in-the-dark" phenotype that we demonstrated to be a result of the dark accumulation of protochlorophyllide. The presence of a chlL homolog in distantly related bacteria and nonflowering land plants, which are thought to be capable of synthesizing chlorophyll in the dark, was also demonstrated by cross-hybridization analysis. In contrast, we observed no cross-hybridization of a probe of chlL to DNA samples from representative angiosperms that require light for chlorophyll synthesis, in support of our conclusion that chlL is involved in light-independent chlorophyll biosynthesis. The role of chlL in protochlorophyllide reduction as well as recent evidence that both light-independent and light-dependent protochlorophyllide reductases may be of bacterial origin are discussed.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apel K., Santel H. J., Redlinger T. E., Falk H. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1980 Oct;111(1):251–258. doi: 10.1111/j.1432-1033.1980.tb06100.x. [DOI] [PubMed] [Google Scholar]
- Boynton J. E., Gillham N. W., Harris E. H., Hosler J. P., Johnson A. M., Jones A. R., Randolph-Anderson B. L., Robertson D., Klein T. M., Shark K. B. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988 Jun 10;240(4858):1534–1538. doi: 10.1126/science.2897716. [DOI] [PubMed] [Google Scholar]
- Ford C., Wang W. Three new yellow loci in Chlamydomonas reinhardtii. Mol Gen Genet. 1980;179(2):259–263. doi: 10.1007/BF00425452. [DOI] [PubMed] [Google Scholar]
- Fujita Y., Takahashi Y., Kohchi T., Ozeki H., Ohyama K., Matsubara H. Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha. Plant Mol Biol. 1989 Nov;13(5):551–561. doi: 10.1007/BF00027315. [DOI] [PubMed] [Google Scholar]
- Goldschmidt-Clermont M., Choquet Y., Girard-Bascou J., Michel F., Schirmer-Rahire M., Rochaix J. D. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell. 1991 Apr 5;65(1):135–143. doi: 10.1016/0092-8674(91)90415-u. [DOI] [PubMed] [Google Scholar]
- Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hearst J. E., Alberti M., Doolittle R. F. A putative nitrogenase reductase gene found in the nucleotide sequences from the photosynthetic gene cluster of R. capsulata. Cell. 1985 Jan;40(1):219–220. doi: 10.1016/0092-8674(85)90325-3. [DOI] [PubMed] [Google Scholar]
- Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
- Howard J. B., Davis R., Moldenhauer B., Cash V. L., Dean D. Fe:S cluster ligands are the only cysteines required for nitrogenase Fe-protein activities. J Biol Chem. 1989 Jul 5;264(19):11270–11274. [PubMed] [Google Scholar]
- Huang C., Liu X. Q. Nucleotide sequence of the frxC, petB and trnL genes in the chloroplast genome of Chlamydomonas reinhardtii. Plant Mol Biol. 1992 Mar;18(5):985–988. doi: 10.1007/BF00019214. [DOI] [PubMed] [Google Scholar]
- Jones R., Haselkorn R. The DNA sequence of the Rhodobacter capsulatus nifH gene. Nucleic Acids Res. 1988 Sep 12;16(17):8735–8735. doi: 10.1093/nar/16.17.8735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohchi T., Shirai H., Fukuzawa H., Sano T., Komano T., Umesono K., Inokuchi H., Ozeki H., Ohyama K. Structure and organization of Marchantia polymorpha chloroplast genome. IV. Inverted repeat and small single copy regions. J Mol Biol. 1988 Sep 20;203(2):353–372. doi: 10.1016/0022-2836(88)90004-6. [DOI] [PubMed] [Google Scholar]
- LASCELLES J. The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Dec;23:487–498. doi: 10.1099/00221287-23-3-487. [DOI] [PubMed] [Google Scholar]
- Lidholm J., Gustafsson P. Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol. 1991 Oct;17(4):787–798. doi: 10.1007/BF00037061. [DOI] [PubMed] [Google Scholar]
- Newman S. M., Boynton J. E., Gillham N. W., Randolph-Anderson B. L., Johnson A. M., Harris E. H. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics. 1990 Dec;126(4):875–888. doi: 10.1093/genetics/126.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman S. M., Gillham N. W., Harris E. H., Johnson A. M., Boynton J. E. Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol Gen Genet. 1991 Nov;230(1-2):65–74. doi: 10.1007/BF00290652. [DOI] [PubMed] [Google Scholar]
- Ohyama K., Fukuzawa H., Kohchi T., Sano T., Sano S., Shirai H., Umesono K., Shiki Y., Takeuchi M., Chang Z. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol. 1988 Sep 20;203(2):281–298. doi: 10.1016/0022-2836(88)90001-0. [DOI] [PubMed] [Google Scholar]
- Peschek G. A., Hinterstoisser B., Pineau B., Missbichler A. Light-independent NADPH-protochlorophyllide oxidoreductase activity in purified plasma membrane from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun. 1989 Jul 14;162(1):71–78. doi: 10.1016/0006-291x(89)91963-3. [DOI] [PubMed] [Google Scholar]
- Peschek G. A., Hinterstoisser B., Wastyn M., Kuntner O., Pineau B., Missbichler A., Lang J. Chlorophyll precursors in the plasma membrane of a cyanobacterium, Anacystis nidulans. Characterization of protochlorophyllide and chlorophyllide by spectrophotometry, spectrofluorimetry, solvent partition, and high performance liquid chromatography. J Biol Chem. 1989 Jul 15;264(20):11827–11832. [PubMed] [Google Scholar]
- Schulz R., Steinmüller K., Klaas M., Forreiter C., Rasmussen S., Hiller C., Apel K. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet. 1989 Jun;217(2-3):355–361. doi: 10.1007/BF02464904. [DOI] [PubMed] [Google Scholar]
- Shimada H., Sugiura M. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res. 1991 Mar 11;19(5):983–995. doi: 10.1093/nar/19.5.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Taylor D. P., Cohen S. N., Clark W. G., Marrs B. L. Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol. 1983 May;154(2):580–590. doi: 10.1128/jb.154.2.580-590.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. M., Bauer C. E. Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol. 1990 Sep;172(9):5001–5010. doi: 10.1128/jb.172.9.5001-5010.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell. 1984 Jul;37(3):949–957. doi: 10.1016/0092-8674(84)90429-x. [DOI] [PubMed] [Google Scholar]
- Zsebo K. M., Hearst J. E. Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell. 1984 Jul;37(3):937–947. doi: 10.1016/0092-8674(84)90428-8. [DOI] [PubMed] [Google Scholar]