Abstract
In eukaryotic cells, phosphatidylinositol 4-hydroxy kinase and phosphatidylinositol-4-phosphate 5-hydroxy kinase are responsible for the formation of the two second messenger precursors phosphatidylinositol-4-phosphate (Ptdlns(4)P) and phosphatidylinositol-4,5-bisphosphate (Ptdlns(4,5)P2). In plant cells, these kinases have been considered to be exclusively membrane associated, with the majority of activity residing in the inner leaflet of the plasmalemma. By sequentially extracting carrot protoplasts with the detergent Nonidet P-40 then more rigorously with Triton X-100, we were able to remove the activity of three separate plasma membrane marker enzymes and to demonstrate that a significant proportion of cellular Ptdlns 4-kinase is associated with the cytoskeleton. When only endogenous substrates were present, Nonidet P-40-permeabilized protoplasts and Nonidet P-40-extracted cytoskeletons displayed a pattern of lipid phosphorylation similar to that obtained with isolated plant membranes or permeabilized cells, whereas the Triton X-100-extracted cytoskeletons showed little or no activity. In contrast, when exogenous substrates were added, a major proportion of PtdlnsP formed was due to kinase activity associated with the cytoskeleton as well as nuclei. However, by subtracting the activity of isolated nuclei, it could be demonstrated that a significant proportion of the detergent-resistant Ptdlns kinase activity resides with the cytoskeletal fraction. These findings suggest that the pathways of polyphosphoinositide biosynthesis in plant cells should be reevaluated to take account of the cytoskeleton and that Ptdlns(4)P itself may play a unique role in modulation of plant cytoskeletal integrity and cellular signal transduction.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett D. R., Powell J. G., Jr, Cochrane R. L. Maintenance of unimplanted fertilized ova in spayed rats. II. Effects of progesterone therapy and the duration of the delay in implantation. Biol Reprod. 1980 Apr;22(3):500–506. doi: 10.1095/biolreprod22.3.500. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown D. M., Stewart J. C. The structure of triphosphoinositide from beef brain. Biochim Biophys Acta. 1966 Dec 7;125(3):413–421. doi: 10.1016/0005-2760(66)90029-4. [DOI] [PubMed] [Google Scholar]
- Capitani S., Bertagnolo V., Mazzoni M., Santi P., Previati M., Antonucci A., Manzoli F. A. Lipid phosphorylation in isolated rat liver nuclei. Synthesis of polyphosphoinositides at subnuclear level. FEBS Lett. 1989 Aug 28;254(1-2):194–198. doi: 10.1016/0014-5793(89)81037-3. [DOI] [PubMed] [Google Scholar]
- Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocco L., Martelli A. M., Gilmour R. S., Ognibene A., Manzoli F. A., Irvine R. F. Changes in nuclear inositol phospholipids induced in intact cells by insulin-like growth factor I. Biochem Biophys Res Commun. 1989 Mar 15;159(2):720–725. doi: 10.1016/0006-291x(89)90054-5. [DOI] [PubMed] [Google Scholar]
- Divecha N., Banfić H., Irvine R. F. The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 1991 Nov;10(11):3207–3214. doi: 10.1002/j.1460-2075.1991.tb04883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drøbak B. K., Ferguson I. B., Dawson A. P., Irvine R. F. Inositol-containing lipids in suspension-cultured plant cells: an isotopic study. Plant Physiol. 1988 May;87(1):217–222. doi: 10.1104/pp.87.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drøbak B. K. Plant signal perception and transduction: the role of the phosphoinositide system. Essays Biochem. 1991;26:27–37. [PubMed] [Google Scholar]
- Drøbak B. K., Watkins P. A., Chattaway J. A., Roberts K., Dawson A. P. Metabolism of Inositol(1,4,5)trisphosphate by a Soluble Enzyme Fraction from Pea (Pisum sativum) Roots. Plant Physiol. 1991 Feb;95(2):412–419. doi: 10.1104/pp.95.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulton A. B., Wan K. M., Penman S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell. 1980 Jul;20(3):849–857. doi: 10.1016/0092-8674(80)90331-1. [DOI] [PubMed] [Google Scholar]
- Goldschmidt-Clermont P. J., Kim J. W., Machesky L. M., Rhee S. G., Pollard T. D. Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science. 1991 Mar 8;251(4998):1231–1233. doi: 10.1126/science.1848725. [DOI] [PubMed] [Google Scholar]
- Grondin P., Plantavid M., Sultan C., Breton M., Mauco G., Chap H. Interaction of pp60c-src, phospholipase C, inositol-lipid, and diacyglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem. 1991 Aug 25;266(24):15705–15709. [PubMed] [Google Scholar]
- Horigome T., Sugano H. A rapid method for removal of detergents from protein solution. Anal Biochem. 1983 Apr 15;130(2):393–396. doi: 10.1016/0003-2697(83)90605-x. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Letcher A. J., Lander D. J., Drøbak B. K., Dawson A. P., Musgrave A. Phosphatidylinositol(4,5)bisphosphate and Phosphatidylinositol(4)phosphate in Plant Tissues. Plant Physiol. 1989 Mar;89(3):888–892. doi: 10.1104/pp.89.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janmey P. A., Iida K., Yin H. L., Stossel T. P. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem. 1987 Sep 5;262(25):12228–12236. [PubMed] [Google Scholar]
- Janmey P. A., Matsudaira P. T. Functional comparison of villin and gelsolin. Effects of Ca2+, KCl, and polyphosphoinositides. J Biol Chem. 1988 Nov 15;263(32):16738–16743. [PubMed] [Google Scholar]
- Janmey P. A., Stossel T. P. Gelsolin-polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J Biol Chem. 1989 Mar 25;264(9):4825–4831. [PubMed] [Google Scholar]
- Janmey P. A., Stossel T. P. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature. 1987 Jan 22;325(6102):362–364. doi: 10.1038/325362a0. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lassing I., Lindberg U. Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp Cell Res. 1988 Jan;174(1):1–15. doi: 10.1016/0014-4827(88)90136-x. [DOI] [PubMed] [Google Scholar]
- Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
- Lundberg G. A., Jergil B. Generation of phosphatidylinositol 4,5-bisphosphate proceeds through an intracellular route in rat hepatocytes. FEBS Lett. 1988 Nov 21;240(1-2):171–176. doi: 10.1016/0014-5793(88)80362-4. [DOI] [PubMed] [Google Scholar]
- McLean B. G., Huang S. R., McKinney E. C., Meagher R. B. Plants contain highly divergent actin isovariants. Cell Motil Cytoskeleton. 1990;17(4):276–290. doi: 10.1002/cm.970170403. [DOI] [PubMed] [Google Scholar]
- Memon A. R., Chen Q. Y., Boss W. F. Inositol phospholipids activate plasma membrane ATPase in plants. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1295–1301. doi: 10.1016/0006-291x(89)90814-0. [DOI] [PubMed] [Google Scholar]
- Nolan R. D., Lapetina E. G. Thrombin stimulates the production of a novel polyphosphoinositide in human platelets. J Biol Chem. 1990 Feb 15;265(5):2441–2445. [PubMed] [Google Scholar]
- Olsson H., Persson A., Jergil B. Purification of liver membranes highly enriched in phosphatidylinositol kinase. Cell Signal. 1991;3(4):353–359. doi: 10.1016/0898-6568(91)90064-2. [DOI] [PubMed] [Google Scholar]
- Palmgren M. G., Askerlund P., Fredrikson K., Widell S., Sommarin M., Larsson C. Sealed inside-out and right-side-out plasma membrane vesicles : optimal conditions for formation and separation. Plant Physiol. 1990 Apr;92(4):871–880. doi: 10.1104/pp.92.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payrastre B., van Bergen en Henegouwen P. M., Breton M., den Hartigh J. C., Plantavid M., Verkleij A. J., Boonstra J. Phosphoinositide kinase, diacylglycerol kinase, and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor. J Cell Biol. 1991 Oct;115(1):121–128. doi: 10.1083/jcb.115.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M., Euteneuer U., Porter K. R. Release of enzymes of intermediary metabolism from permeabilized cells: further evidence in support of a structural organization of the cytoplasmic matrix. Eur J Cell Biol. 1987 Oct;44(2):214–218. [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
- Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987 Jul;105(1):387–395. doi: 10.1083/jcb.105.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
- Wreggett K. A., Irvine R. F. Automated isocratic high-performance liquid chromatography of inositol phosphate isomers. Biochem J. 1989 Sep 15;262(3):997–1000. doi: 10.1042/bj2620997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida S., Uemura M., Niki T., Sakai A., Gusta L. V. Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol. 1983 May;72(1):105–114. doi: 10.1104/pp.72.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]