Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Aug;4(8):961–969. doi: 10.1105/tpc.4.8.961

Expression of an outward-rectifying potassium channel from maize mRNA and complementary RNA in Xenopus oocytes.

Y Cao 1, M Anderova 1, N M Crawford 1, J I Schroeder 1
PMCID: PMC160188  PMID: 1392603

Abstract

Injection of Xenopus oocytes with poly(A)+ mRNA isolated from different plants (maize, cucumber, and squash) results in the appearance of a voltage- and time-dependent, potassium-selective, outward current that is similar to the outward-rectifying potassium current recorded in many higher plant cells. Maize shoots were found to be especially enriched in mRNA encoding such activity. A cDNA library of maize shoot mRNA was constructed in the vector lambda ZAPII and was used to synthesize RNA complementary to the cDNA (cRNA). Injection of the cRNA gave rise to an outward-rectifying potassium current with properties similar to the currents obtained by poly(A)+ mRNA injection. These results demonstrate that higher plant mRNA can be properly translated into a product that produces a voltage-regulated potassium channel in the plasma membrane of Xenopus oocytes. Thus, Xenopus oocytes can be used as a heterologous expression system for the functional identification and isolation of plant ion channel genes as well as for the study of structure-function relationship of plant ion channels.

Full Text

The Full Text of this article is available as a PDF (783.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barish M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 1983 Sep;342:309–325. doi: 10.1113/jphysiol.1983.sp014852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  5. Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gradmann D., Klieber H. G., Hansen U. P. Reaction kinetic parameters for ion transport from steady-state current-voltage curves. Biophys J. 1987 Apr;51(4):569–585. doi: 10.1016/S0006-3495(87)83382-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gundersen C. B., Miledi R., Parker I. Messenger RNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes. 1984 Mar 29-Apr 4Nature. 308(5958):421–424. doi: 10.1038/308421a0. [DOI] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  10. Iverson L. E., Tanouye M. A., Lester H. A., Davidson N., Rudy B. A-type potassium channels expressed from Shaker locus cDNA. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5723–5727. doi: 10.1073/pnas.85.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ketchum K. A., Poole R. J. Pharmacology of the Ca2(+)-dependent K+ channel in corn protoplasts. FEBS Lett. 1990 Nov 12;274(1-2):115–118. doi: 10.1016/0014-5793(90)81343-m. [DOI] [PubMed] [Google Scholar]
  12. Lew R. R., Serlin B. S., Schauf C. L., Stockton M. E. Red light regulates calcium-activated potassium channels in mougeotia plasma membrane. Plant Physiol. 1990 Mar;92(3):822–830. doi: 10.1104/pp.92.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lu L., Montrose-Rafizadeh C., Hwang T. C., Guggino W. B. A delayed rectifier potassium current in Xenopus oocytes. Biophys J. 1990 Jun;57(6):1117–1123. doi: 10.1016/S0006-3495(90)82632-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Melton D. A. Translation of messenger RNA in injected frog oocytes. Methods Enzymol. 1987;152:288–296. doi: 10.1016/0076-6879(87)52033-x. [DOI] [PubMed] [Google Scholar]
  15. Miledi R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B Biol Sci. 1982 Jul 22;215(1201):491–497. doi: 10.1098/rspb.1982.0056. [DOI] [PubMed] [Google Scholar]
  16. Moran N., Ehrenstein G., Iwasa K., Mischke C., Bare C., Satter R. L. Potassium Channels in Motor Cells of Samanea saman: A Patch-Clamp Study. Plant Physiol. 1988 Nov;88(3):643–648. doi: 10.1104/pp.88.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moran N., Fox D., Satter R. L. Interaction of the Depolarization-Activated K Channel of Samanea saman with Inorganic Ions: A Patch-Clamp Study. Plant Physiol. 1990 Oct;94(2):424–431. doi: 10.1104/pp.94.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ribera A. B. A potassium channel gene is expressed at neural induction. Neuron. 1990 Nov;5(5):691–701. doi: 10.1016/0896-6273(90)90223-3. [DOI] [PubMed] [Google Scholar]
  19. Rosenthal M. D., Jones J. E. Release of arachidonic acid from vascular endothelial cells: fatty acyl specificity is observed with receptor-mediated agonists and with the calcium ionophore A23187 but not with melittin. J Cell Physiol. 1988 Aug;136(2):333–340. doi: 10.1002/jcp.1041360217. [DOI] [PubMed] [Google Scholar]
  20. Schroeder J. I., Fang H. H. Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11583–11587. doi: 10.1073/pnas.88.24.11583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schroeder J. I. Quantitative analysis of outward rectifying K+ channel currents in guard cell protoplasts from Vicia faba. J Membr Biol. 1989 Mar;107(3):229–235. doi: 10.1007/BF01871938. [DOI] [PubMed] [Google Scholar]
  22. Slayman C. L. The plasma membrane ATPase of Neurospora: a proton-pumping electroenzyme. J Bioenerg Biomembr. 1987 Feb;19(1):1–20. doi: 10.1007/BF00769728. [DOI] [PubMed] [Google Scholar]
  23. Takumi T., Ohkubo H., Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988 Nov 18;242(4881):1042–1045. doi: 10.1126/science.3194754. [DOI] [PubMed] [Google Scholar]
  24. Timpe L. C., Schwarz T. L., Tempel B. L., Papazian D. M., Jan Y. N., Jan L. Y. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature. 1988 Jan 14;331(6152):143–145. doi: 10.1038/331143a0. [DOI] [PubMed] [Google Scholar]
  25. Wallace J. C., Galili G., Kawata E. E., Cuellar R. E., Shotwell M. A., Larkins B. A. Aggregation of lysine-containing zeins into protein bodies in Xenopus oocytes. Science. 1988 Apr 29;240(4852):662–664. doi: 10.1126/science.2834822. [DOI] [PubMed] [Google Scholar]
  26. Wilkinson J. Q., Crawford N. M. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell. 1991 May;3(5):461–471. doi: 10.1105/tpc.3.5.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zagotta W. N., Hoshi T., Aldrich R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 1990 Oct 26;250(4980):568–571. doi: 10.1126/science.2122520. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES