Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157

General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding.

T Hildmann 1, M Ebneth 1, H Peña-Cortés 1, J J Sánchez-Serrano 1, L Willmitzer 1, S Prat 1
PMCID: PMC160206  PMID: 1392612

Abstract

Exogenous application of abscisic acid (ABA) has been shown to induce a systemic pattern of proteinase inhibitor II (pin2) mRNA accumulation identical to that induced by mechanical wounding. Evidence is presented that the ABA-specific response is not restricted to pin2 genes but appears to be part of a general reaction to wound stress. Four other wound-induced, ABA-responsive genes that encode two additional proteinase inhibitors, the proteolytic enzyme leucine aminopeptidase, and the biosynthetic enzyme threonine deaminase were isolated from potato plants. Wounding or treatment with ABA resulted in a pattern of accumulation of these mRNAs very similar to that of pin2. ABA-deficient plants did not accumulate any of the mRNAs upon wounding, although they showed normal levels of expression upon ABA treatment. Also, application of methyl jasmonate (MeJA) induced a strong accumulation of these transcripts, both in wild-type and in ABA-deficient plants, thus supporting a role for jasmonic acid as an intermediate in the signaling pathway that leads from ABA accumulation in response to wounding to the transcriptional activation of the genes.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Emori Y., Kondo H., Suzuki K., Arai S. Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J Biol Chem. 1987 Dec 15;262(35):16793–16797. [PubMed] [Google Scholar]
  2. Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
  3. Bishop P. D., Makus D. J., Pearce G., Ryan C. A. Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3536–3540. doi: 10.1073/pnas.78.6.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw H. D., Jr, Hollick J. B., Parsons T. J., Clarke H. R., Gordon M. P. Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol. 1990 Jan;14(1):51–59. doi: 10.1007/BF00015654. [DOI] [PubMed] [Google Scholar]
  6. Cox J. L., Cox B. J., Fidanza V., Calhoun D. H. The complete nucleotide sequence of the ilvGMEDA cluster of Escherichia coli K-12. Gene. 1987;56(2-3):185–198. doi: 10.1016/0378-1119(87)90136-3. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Godoy J. A., Pardo J. M., Pintor-Toro J. A. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol. 1990 Nov;15(5):695–705. doi: 10.1007/BF00016120. [DOI] [PubMed] [Google Scholar]
  11. Graham J. S., Pearce G., Merryweather J., Titani K., Ericsson L. H., Ryan C. A. Wound-induced proteinase inhibitors from tomato leaves. II. The cDNA-deduced primary structure of pre-inhibitor II. J Biol Chem. 1985 Jun 10;260(11):6561–6564. [PubMed] [Google Scholar]
  12. Graham J. S., Pearce G., Merryweather J., Titani K., Ericsson L., Ryan C. A. Wound-induced proteinase inhibitors from tomato leaves. I. The cDNA-deduced primary structure of pre-inhibitor I and its post-translational processing. J Biol Chem. 1985 Jun 10;260(11):6555–6560. [PubMed] [Google Scholar]
  13. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  14. Kim S. H., Hara S., Hase S., Ikenaka T., Toda H., Kitamura K., Kaizuma N. Comparative study on amino acid sequences of Kunitz-type soybean trypsin inhibitors, Tia, Tib, and Tic. J Biochem. 1985 Aug;98(2):435–448. doi: 10.1093/oxfordjournals.jbchem.a135298. [DOI] [PubMed] [Google Scholar]
  15. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lotan T., Ori N., Fluhr R. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell. 1989 Sep;1(9):881–887. doi: 10.1105/tpc.1.9.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mares M., Meloun B., Pavlik M., Kostka V., Baudys M. Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family. FEBS Lett. 1989 Jul 17;251(1-2):94–98. doi: 10.1016/0014-5793(89)81435-8. [DOI] [PubMed] [Google Scholar]
  18. Mason H. S., Mullet J. E. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 1990 Jun;2(6):569–579. doi: 10.1105/tpc.2.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nawa H., Kitamura N., Hirose T., Asai M., Inayama S., Nakanishi S. Primary structures of bovine liver low molecular weight kininogen precursors and their two mRNAs. Proc Natl Acad Sci U S A. 1983 Jan;80(1):90–94. doi: 10.1073/pnas.80.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ogawa H., Miller D. A., Dunn T., Su Y., Burcham J. M., Peraino C., Fujioka M., Babcock K., Pitot H. C. Isolation and nucleotide sequence of the cDNA for rat liver serine dehydratase mRNA and structures of the 5' and 3' flanking regions of the serine dehydratase gene. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5809–5813. doi: 10.1073/pnas.85.16.5809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry. 1984 Nov 20;23(24):5691–5697. doi: 10.1021/bi00319a005. [DOI] [PubMed] [Google Scholar]
  23. Pearce G., Strydom D., Johnson S., Ryan C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991 Aug 23;253(5022):895–897. doi: 10.1126/science.253.5022.895. [DOI] [PubMed] [Google Scholar]
  24. Pena-Cortes H., Willmitzer L., Sanchez-Serrano J. J. Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family. Plant Cell. 1991 Sep;3(9):963–972. doi: 10.1105/tpc.3.9.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pēna-Cortés H., Sánchez-Serrano J. J., Mertens R., Willmitzer L., Prat S. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9851–9855. doi: 10.1073/pnas.86.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ritonja A., Krizaj I., Mesko P., Kopitar M., Lucovnik P., Strukelj B., Pungercar J., Buttle D. J., Barrett A. J., Turk V. The amino acid sequence of a novel inhibitor of cathepsin D from potato. FEBS Lett. 1990 Jul 2;267(1):13–15. doi: 10.1016/0014-5793(90)80275-n. [DOI] [PubMed] [Google Scholar]
  27. Rodis P., Hoff J. E. Naturally occurring protein crystals in the potato : inhibitor of papain, chymopapain, and ficin. Plant Physiol. 1984 Apr;74(4):907–911. doi: 10.1104/pp.74.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rowan A. D., Brzin J., Buttle D. J., Barrett A. J. Inhibition of cysteine proteinases by a protein inhibitor from potato. FEBS Lett. 1990 Sep 3;269(2):328–330. doi: 10.1016/0014-5793(90)81186-r. [DOI] [PubMed] [Google Scholar]
  29. Samach A., Hareven D., Gutfinger T., Ken-Dror S., Lifschitz E. Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2678–2682. doi: 10.1073/pnas.88.7.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Song W. C., Brash A. R. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science. 1991 Aug 16;253(5021):781–784. doi: 10.1126/science.1876834. [DOI] [PubMed] [Google Scholar]
  31. Staswick P. E. Novel Regulation of Vegetative Storage Protein Genes. Plant Cell. 1990 Jan;2(1):1–6. doi: 10.1105/tpc.2.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stockhaus J., Schell J., Willmitzer L. Correlation of the expression of the nuclear photosynthetic gene ST-LS1 with the presence of chloroplasts. EMBO J. 1989 Sep;8(9):2445–2451. doi: 10.1002/j.1460-2075.1989.tb08379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strukelj B., Pungercar J., Ritonja A., Krizaj I., Gubensek F., Kregar I., Turk V. Nucleotide and deduced amino acid sequence of an aspartic proteinase inhibitor homologue from potato tubers (Solanum tuberosum L.). Nucleic Acids Res. 1990 Aug 11;18(15):4605–4605. doi: 10.1093/nar/18.15.4605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  35. Vick B. A., Zimmerman D. C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. doi: 10.1104/pp.75.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vogt V. M. Purification and properties of an aminopeptidase from Escherichia coli. J Biol Chem. 1970 Sep 25;245(18):4760–4769. [PubMed] [Google Scholar]
  37. Walker-Simmons M., Jin D., West C. A., Hadwiger L., Ryan C. A. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol. 1984 Nov;76(3):833–836. doi: 10.1104/pp.76.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES