Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Oct;4(10):1333–1344. doi: 10.1105/tpc.4.10.1333

Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid.

D Choi 1, B L Ward 1, R M Bostock 1
PMCID: PMC160219  PMID: 1283354

Abstract

Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is essential for the biosynthesis of sesquiterpenoid phytoalexins and steroid derivatives in Solanaceous plants following stresses imposed by wounding and pathogen infection. To better understand this complex step in stress-responsive isoprenoid synthesis, we isolated three classes of cDNAS encoding HMGR (hmg1, hmg2, and hmg3) from a potato tuber library using a probe derived from an Arabidopsis HMGR cDNA. The potato cDNAs had extensive homology in portions of the protein coding regions but had low homology in the 3' untranslated regions. RNA gel blot analyses using gene-specific probes showed that hmg1 was strongly induced in tuber tissue by wounding, but the wound induction was strongly suppressed by treatment of the tissue with the fungal elicitor arachidonic acid or by inoculation with an incompatible or compatible race of the fungal pathogen Phytophtora infestans. The hmg2 and hmg3 mRNAs also accumulated in response to wounding, but in contrast to hmg1, these mRNAs were strongly enhanced by arachidonic acid or inoculation. Inoculation with a compatible race of P. infestans resulted in similar patterns in HMGR gene expression of hmg2 and hmg3 except that the magnitude and rate of the changes in mRNA levels were reduced relative to the incompatible interaction. The differential regulation of members of the HMGR gene family may explain in part the previously reported changes in HMGR enzyme activities following wounding and elicitor treatment. The suppression of hmg1 and the enhancement of hmg2 and hmg3 transcript levels following elicitor treatment or inoculation with the incompatible race parallel the suppression in steroid and stimulation of sesquiterpenoid accumulations observed in earlier investigations. The results are discussed in relation to the hypothesis that there are discrete organizational channels for sterol and sesquiterpene biosynthesis in potato and other Solanaceous species.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach T. J., Boronat A., Caelles C., Ferrer A., Weber T., Wettstein A. Aspects related to mevalonate biosynthesis in plants. Lipids. 1991 Aug;26(8):637–648. doi: 10.1007/BF02536429. [DOI] [PubMed] [Google Scholar]
  2. Bostock R. M., Kuc J. A., Laine R. A. Eicosapentaenoic and Arachidonic Acids from Phytophthora infestans Elicit Fungitoxic Sesquiterpenes in the Potato. Science. 1981 Apr 3;212(4490):67–69. doi: 10.1126/science.212.4490.67. [DOI] [PubMed] [Google Scholar]
  3. Caelles C., Ferrer A., Balcells L., Hegardt F. G., Boronat A. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol Biol. 1989 Dec;13(6):627–638. doi: 10.1007/BF00016018. [DOI] [PubMed] [Google Scholar]
  4. Chappell J., Nable R. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol. 1987 Oct;85(2):469–473. doi: 10.1104/pp.85.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chappell J., Vonlanken C., Vögeli U. Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme a reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures. Plant Physiol. 1991 Oct;97(2):693–698. doi: 10.1104/pp.97.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chye M. L., Tan C. T., Chua N. H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol Biol. 1992 Jun;19(3):473–484. doi: 10.1007/BF00023395. [DOI] [PubMed] [Google Scholar]
  7. Darnay B. G., Wang Y., Rodwell V. W. Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1992 Jul 25;267(21):15064–15070. [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Fischer R. L., Goldberg R. B. Structure and flanking regions of soybean seed protein genes. Cell. 1982 Jun;29(2):651–660. doi: 10.1016/0092-8674(82)90181-7. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  11. Kondo K., Oba K. Purification and characterization of 3-hydroxy-3-methylglutaryl CoA reductase from potato tubers. J Biochem. 1986 Oct;100(4):967–974. doi: 10.1093/oxfordjournals.jbchem.a121809. [DOI] [PubMed] [Google Scholar]
  12. Nakata P. A., Greene T. W., Anderson J. M., Smith-White B. J., Okita T. W., Preiss J. Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol. 1991 Nov;17(5):1089–1093. doi: 10.1007/BF00037149. [DOI] [PubMed] [Google Scholar]
  13. Narita J. O., Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell. 1989 Feb;1(2):181–190. doi: 10.1105/tpc.1.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stermer B. A., Bostock R. M. Involvement of 3-hydroxy-3-methylglutaryl coenzyme a reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol. 1987 Jun;84(2):404–408. doi: 10.1104/pp.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Timberlake W. E. Low repetitive DNA content in Aspergillus nidulans. Science. 1978 Dec 1;202(4371):973–975. doi: 10.1126/science.362530. [DOI] [PubMed] [Google Scholar]
  16. Tjamos E. C., Kucacute J. A. Inhibition of steroid glycoalkaloid accumulation by arachidonic and eicosapentaenoic acids in potato. Science. 1982 Aug 6;217(4559):542–544. doi: 10.1126/science.217.4559.542. [DOI] [PubMed] [Google Scholar]
  17. Vögeli U., Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 1988 Dec;88(4):1291–1296. doi: 10.1104/pp.88.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang Y., Darnay B. G., Rodwell V. W. Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1990 Dec 15;265(35):21634–21641. [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES