Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1992 Nov;4(11):1353–1358. doi: 10.1105/tpc.4.11.1353

Ultraviolet Radiation and Plants: Burning Questions.

AE Stapleton 1
PMCID: PMC160223  PMID: 12297637

Full Text

The Full Text of this article is available as a PDF (571.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beggs C. J., Stolzer-Jehle A., Wellmann E. Isoflavonoid Formation as an Indicator of UV Stress in Bean (Phaseolus vulgaris L.) Leaves : The Significance of Photorepair in Assessing Potential Damage by Increased Solar UV-B Radiation. Plant Physiol. 1985 Nov;79(3):630–634. doi: 10.1104/pp.79.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Block A., Dangl J. L., Hahlbrock K., Schulze-Lefert P. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5387–5391. doi: 10.1073/pnas.87.14.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Khurana J. P., Poff K. L. Mutants of Arabidopsis thaliana with altered phototropism. Planta. 1989;178:400–406. [PubMed] [Google Scholar]
  4. López-Juez E., Nagatani A., Tomizawa K., Deak M., Kern R., Kendrick R. E., Furuya M. The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell. 1992 Mar;4(3):241–251. [PMC free article] [PubMed] [Google Scholar]
  5. McFarland M., Kaye J. Chlorofluorocarbons and ozone. Photochem Photobiol. 1992 Jun;55(6):911–929. doi: 10.1111/j.1751-1097.1992.tb08540.x. [DOI] [PubMed] [Google Scholar]
  6. Pang Q., Hays J. B. UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):536–543. doi: 10.1104/pp.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pratt L. H., Butler W. L. Phytochrome conversion by ultraviolet light. Photochem Photobiol. 1970 Jun;11(6):503–509. doi: 10.1111/j.1751-1097.1970.tb06021.x. [DOI] [PubMed] [Google Scholar]
  8. Sauerbier W., Hercules K. Gene and transcription unit mapping by radiation effects. Annu Rev Genet. 1978;12:329–363. doi: 10.1146/annurev.ge.12.120178.001553. [DOI] [PubMed] [Google Scholar]
  9. Schulze-Lefert P., Becker-André M., Schulz W., Hahlbrock K., Dangl J. L. Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell. 1989 Jul;1(7):707–714. doi: 10.1105/tpc.1.7.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Staiger D., Kaulen H., Schell J. A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6930–6934. doi: 10.1073/pnas.86.18.6930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. van der Meer I. M., Spelt C. E., Mol J. N., Stuitje A. R. Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. Plant Mol Biol. 1990 Jul;15(1):95–109. doi: 10.1007/BF00017727. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES