Abstract
Emerging evidence suggests that individual members of the phytochrome family of photoreceptors may regulate discrete facets of plant photomorphogenesis. We report here the isolation of phytochrome A mutants of Arabidopsis using a novel screening strategy aimed at detecting seedlings with long hypocotyls in prolonged far-red light. Complementation analysis of 10 selected mutant lines showed that each represents an independent, recessive allele at a new locus, designated hy8. Immunoblot and spectrophotometric analyses of two of these lines, hy8-1 and hy8-2, showed that, whereas phytochromes B and C are expressed at wild-type levels, phytochrome A is undetectable, thus indicating that the long hypocotyl phenotype displayed by these mutants is caused by phytochrome A deficiency. A third allele, hy8-3, expresses wild-type levels of spectrally normal phytochrome A, suggesting a mutation that has resulted in loss of biological activity in an otherwise photochemically active photoreceptor molecule. Together with physiological experiments, these data provide direct evidence that endogenous phytochrome A is responsible for the "far-red high irradiance response" of etiolated seedlings, but does not play a major role in mediating responses to prolonged red or white light. Because the hy8 and the phytochrome B-deficient hy3 mutants exhibit reciprocal responsivity toward prolonged red and far-red light, respectively, the evidence indicates that phytochromes A and B have distinct photosensory roles in regulating seedling development.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beggs C. J., Holmes M. G., Jabben M., Schäfer E. Action Spectra for the Inhibition of Hypocotyl Growth by Continuous Irradiation in Light and Dark-Grown Sinapis alba L. Seedlings. Plant Physiol. 1980 Oct;66(4):615–618. doi: 10.1104/pp.66.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boylan M. T., Quail P. H. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10806–10810. doi: 10.1073/pnas.88.23.10806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J. Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biol. 1991 Jun;3(6):538–548. [PubMed] [Google Scholar]
- Dehesh K., Tepperman J., Christensen A. H., Quail P. H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet. 1991 Feb;225(2):305–313. doi: 10.1007/BF00269863. [DOI] [PubMed] [Google Scholar]
- Devlin P. F., Rood S. B., Somers D. E., Quail P. H., Whitelam G. C. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide. Plant Physiol. 1992 Nov;100(3):1442–1447. doi: 10.1104/pp.100.3.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- López-Juez E., Nagatani A., Tomizawa K., Deak M., Kern R., Kendrick R. E., Furuya M. The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell. 1992 Mar;4(3):241–251. [PMC free article] [PubMed] [Google Scholar]
- Parks B. M., Quail P. H. Phytochrome-Deficient hy1 and hy2 Long Hypocotyl Mutants of Arabidopsis Are Defective in Phytochrome Chromophore Biosynthesis. Plant Cell. 1991 Nov;3(11):1177–1186. doi: 10.1105/tpc.3.11.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
- Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]