Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171

Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation.

J Li 1, TM Ou-Lee 1, R Raba 1, RG Amundson 1, RL Last 1
PMCID: PMC160260  PMID: 12271060

Abstract

Increases in the terrestrial levels of ultraviolet-B (UV-B) radiation (280 to 320 nm) due to diminished stratospheric ozone have prompted an investigation of the protective mechanisms that contribute to UV-B tolerance in plants. In response to UV-B stress, flowering plants produce a variety of UV-absorptive secondary products derived from phenylalanine. Arabidopsis mutants with defects in the synthesis of these compounds were tested for UV-B sensitivity. The transparent testa-4 (tt4) mutant, which has reduced flavonoids and normal levels of sinapate esters, is more sensitive to UV-B than the wild type when grown under high UV-B irradiance. The tt5 and tt6 mutants, which have reduced levels of UV-absorptive leaf flavonoids and the monocyclic sinapic acid ester phenolic compounds, are highly sensitive to the damaging effects of UV-B radiation. These results demonstrate that both flavonoids and other phenolic compounds play important roles in vivo in plant UV-B protection.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. G., Toohey D. W., Brune W. H. Free Radicals Within the Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss. Science. 1991 Jan 4;251(4989):39–46. doi: 10.1126/science.251.4989.39. [DOI] [PubMed] [Google Scholar]
  2. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinbaum R. L., Ausubel F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol. 1988 May;8(5):1985–1992. doi: 10.1128/mcb.8.5.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Graham T. L. A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 1991 Feb;95(2):584–593. doi: 10.1104/pp.95.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Last R. L., Bissinger P. H., Mahoney D. J., Radwanski E. R., Fink G. R. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991 Apr;3(4):345–358. doi: 10.1105/tpc.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
  10. Pang Q., Hays J. B. UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):536–543. doi: 10.1104/pp.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pruitt K. D., Hanson M. R. Transcription of the Petunia mitochondrial CMS-associated Pcf locus in male sterile and fertility-restored lines. Mol Gen Genet. 1991 Jul;227(3):348–355. doi: 10.1007/BF00273922. [DOI] [PubMed] [Google Scholar]
  12. Schmelzer E., Jahnen W., Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A. 1988 May;85(9):2989–2993. doi: 10.1073/pnas.85.9.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schoeberl M. R., Hartmann D. L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science. 1991 Jan 4;251(4989):46–52. doi: 10.1126/science.251.4989.46. [DOI] [PubMed] [Google Scholar]
  14. Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stapleton A. E. Ultraviolet Radiation and Plants: Burning Questions. Plant Cell. 1992 Nov;4(11):1353–1358. doi: 10.1105/tpc.4.11.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES